
Automatic Verification

of

Real-Time Systems with Rich Data

Ernst-Rüdiger Olderog

RTS+D – p.1/59

Motivation

Embedded system =

system where computer is invisible part of it
to control its function

ECUs on board of a cars: Mercedes S class (1998)

RTS+D – p.2/59

Motivation

Embedded system =

system where computer is invisible part of it
to control its function

ECUs on board of a cars: Mercedes S class (1998)

Safety-critical applications :

malfunction of computer is costly and dangerous
RTS+D – p.2/59

Trains

ETCS (European Train Control System) Level 3:

Safety Property: Collision Freedom

RTS+D – p.3/59

Planes

TCAS (Traffic Alert and Collision Avoidance System):

Pilot 2Pilot 1

TCAS 1 TCAS 2

Aircraft 1 Aircraft 2

Sensor 1 Sensor 2

Communication
Channel 1

Communication
Channel 2

ConflictConflict

ConflictConflict
Detection 1

Resolution 1 Resolution 2

Detection 2

Advisories Advisories

case of two aircrafts
RTS+D – p.4/59

Real-Time Systems

... are reactive systems where certain inputs

require the corresponding outputs

within given time bounds.

Example: European Train Control System (ETCS)

Safety Property: Collision Freedom
RTS+D – p.5/59

AVACS Project Group R

... advances the

automatic verification and analysis of real-time systems

in three complementary projects R1–R3:

à R1: Beyond Timed Automata
high-level specifications: real-time and complex infinite data

à R2: Timing Analysis, Scheduling, and
Distribution of Real-Time Tasks
implementation level: complex target architectures

à R3: Heuristic Search and Abstract Model Checking
for Real-Time Systems
highly concurrent systems: many clocks and many components

RTS+D – p.6/59

R1: Beyond Timed Automata

E.-R. Olderog,

B. Finkbeiner, M. Fränzle, A. Podelski, V. Sofronie-Stokkermans

... investigates Real-Time Systems with Rich Data:

à System specification language: CSP-OZ-DC

integrates processes (Comm. Sequ. Processes)

data (Object-Z)

time (Duration Calculus)

à Real-time requirements: DC

à Problem: Does specification satisfy requirement ?

RTS+D – p.7/59

Specification of Processes

CSP Communicating Sequential Processes

since 1978: Hoare, Brookes, Roscoe

• synchronous communication via channels:

c!e
c

c?x

• parallel composition and hiding

• mathematical theory

RTS+D – p.8/59

Specification of Data

Z since 1980: Abrial, Sufrin, Spivey

• state spaces and transformations

• mathematical tool kit

• schema calculus

S
declarations

predicate x ′ > x + 1

OZ Object-Z

since 1995: Duke, Rose, Smith

• class concept

• inheritance

RTS+D – p.9/59

Specification of Time

DC Duration Calculus

since 1991: Zhou, Hoare, Ravn, Hansen

• real-time logic and calculus

for properties of obs : Time → D

D

Time

eb

• interval-based properties: e.g. durations
RTS+D – p.10/59

Parameterized Elevator

Min

current

Max

Hoenicke & Maier (2005)

à Elevator specification:

parameters Max ,Min: integers

real-time requirements: e.g.
at least 3 sec between two floors

time domain: reals

à Safety requirement:

Min ≤ current ≤ Max

RTS+D – p.11/59

Specification: CSP-OZ-DC

Hoenicke & Olderog (since 2002)

newgoal

start

passedstop

Interface:

chan start ,passed ,stop,newgoal

CSP specifies order of events:

main
c
= newgoal → start → Drive

Drive
c
= (passed → Drive)

2 (stop → main)

RTS+D – p.12/59

Specification: CSP-OZ-DC

Object-Z specifies state space ...

Min,Max : Z

Min < Max

current : Z [state space]
goal : Z
dir : {−1,0,1}

Init

goal = current = Min
dir = 0

RTS+D – p.13/59

Specification: CSP-OZ-DC

... and operations:

com newgoal
∆(goal)

Min ≤ goal ′ ≤ Max [nondeterminism]

goal ′ 6= current

com start
∆(dir)

goal > current ⇒ dir ′ = 1

goal < current ⇒ dir ′ = −1

RTS+D – p.14/59

Specification: CSP-OZ-DC

... operations, cont’d:

com passed
∆(current)

current ′ = current + dir

com stop
∆()

goal = current [precondition]

RTS+D – p.15/59

Specification: CSP-OZ-DC

Duration Calculus restricts timing of states and events:

• More than 3 seconds between two passed events:

¬3 (lpassed ; ℓ≤ 3 ;lpassed)

counterexample trace:

0

1

l 3

passed passed

passed

Time

RTS+D – p.16/59

Specification: CSP-OZ-DC

• Event stop within 2 sec after reaching goal:

¬3 (⌈current 6= goal⌉ ; (⌈current = goal⌉ ∧ ℓ≥ 2 ∧⊟stop))

counterexample trace:

true

l 2

no stop event

true current goalcurrent goal

Time

RTS+D – p.17/59

Class Elevator
Elevator

chan start ,passed ,stop,newgoal

CSP
main

c
= newgoal → start → Drive

Drive
c
= (passed → Drive) 2 (stop → main)

OZ

Min,Max : Z

Min < Max

current ,goal : Z

dir : {−1,0,1}

Init

goal = current = Min

dir = 0

com newgoal

∆(goal)

Min ≤ goal ′ ≤ Max

goal ′ 6= current

com start

∆(dir)

goal > current ⇒ dir ′ = 1

goal < current ⇒ dir ′ = −1

com passed

∆(current)

current ′ = current +dir

com stop

∆()

goal = current

DC ¬3 (lpassed ; ℓ≤ 3 ;lpassed)

¬3 (⌈current 6= goal⌉ ; (⌈current = goal⌉ ∧ ℓ≥ 2 ∧⊟stop))
RTS+D – p.18/59

Semantics of CSP-OZ-DC

by translation into Phase-Event-Automata (PEA),
a variant of Timed Automata due to Hoenicke (2006)

This semantics is compositional:

A(COD) = A(CSP) ‖ A(OZ) ‖ A(DC)

where ‖ synchronises on both phases and events.

RTS+D – p.19/59

Phase-Event-Automata

p1 p2

RTS+D – p.20/59

Phase-Event-Automata

p1

s(p1)
p2

s(p2)

s(pi) state invariant

RTS+D – p.20/59

Phase-Event-Automata

p1

s(p1)
I(p1)

p2

s(p2)
I(p2)

s(pi) state invariant

I(pi) clock invariant

RTS+D – p.20/59

Phase-Event-Automata

guard
p1

s(p1)
I(p1)

p2

s(p2)
I(p2)

s(pi) state invariant

I(pi) clock invariant

guard conditions over events, state space and time

RTS+D – p.20/59

Phase-Event-Automata

guard

resets

p1

s(p1)
I(p1)

p2

s(p2)
I(p2)

s(pi) state invariant

I(pi) clock invariant

guard conditions over events, state space and time

resets reset of clocks

RTS+D – p.20/59

Phase-Event-Automata

guard

resets

p1

s(p1)
I(p1)

p2

s(p2)
I(p2)

s(pi) state invariant

I(pi) clock invariant

guard conditions over events, state space and time

resets reset of clocks

Parallel Composition: A1 ‖ A2

RTS+D – p.20/59

PEA Represent Sets of Runs

A run is a sequence of configurations

ρ = 〈. . . , (pi ,βi ,γi ,Yi , ti), . . .〉

RTS+D – p.21/59

PEA Represent Sets of Runs

A run is a sequence of configurations

ρ = 〈. . . , (pi ,βi ,γi ,Yi , ti), . . .〉

each one describing an interval, where

à pi is a phase,

RTS+D – p.21/59

PEA Represent Sets of Runs

A run is a sequence of configurations

ρ = 〈. . . , (pi ,βi ,γi ,Yi , ti), . . .〉

each one describing an interval, where

à pi is a phase,

à βi is a valuation of the variables,

RTS+D – p.21/59

PEA Represent Sets of Runs

A run is a sequence of configurations

ρ = 〈. . . , (pi ,βi ,γi ,Yi , ti), . . .〉

each one describing an interval, where

à pi is a phase,

à βi is a valuation of the variables,

à γi is a valuation of the clocks at the beginning of the interval,

RTS+D – p.21/59

PEA Represent Sets of Runs

A run is a sequence of configurations

ρ = 〈. . . , (pi ,βi ,γi ,Yi , ti), . . .〉

each one describing an interval, where

à pi is a phase,

à βi is a valuation of the variables,

à γi is a valuation of the clocks at the beginning of the interval,

à Yi is a set of events occurring at the beginning of the interval,

RTS+D – p.21/59

PEA Represent Sets of Runs

A run is a sequence of configurations

ρ = 〈. . . , (pi ,βi ,γi ,Yi , ti), . . .〉

each one describing an interval, where

à pi is a phase,

à βi is a valuation of the variables,

à γi is a valuation of the clocks at the beginning of the interval,

à Yi is a set of events occurring at the beginning of the interval,

à ti is a duration of the interval.

RTS+D – p.21/59

Semantic Property of PEA

Compositionality Lemma

ρ ∈ Runs(A1 ‖ A2)

iff ρ ↓ A1 ∈ Runs(A1) and ρ ↓ A2 ∈ Runs(A2)

This lemma is at the core of a modular verification
method for parallel compositions of PEA:

if a small set of parallel PEA satisfies a safety property,
also a larger set of parallel PEA will satisfy it.

RTS+D – p.22/59

Translation of CSP

main
c
= newgoal → start → Drive

Drive
c
= (passed → Drive) 2 (stop → main)

p0
(main)

true

p1

true

p2
(Drive)

truenewgoal

∧¬ start

∧¬ stop

∧¬ passed

start

∧

¬ newgoal

∧¬ stop

∧¬ passed

stop ∧¬ newgoal ∧¬ start ∧¬ passed

φidle φidle φidle

passed

∧¬ newgoal

∧¬ start

∧¬ stop

where

φidle := ¬ newgoal ∧¬ start ∧¬ passed ∧¬ stop

RTS+D – p.23/59

Translation of OZ

pinit

Init

p
trueφidle

φidle φidle

newgoal ∧ com newgoal

start ∧ com start

passed ∧ com passed

stop ∧ com stop

where

φidle := ¬ newgoal ∧¬ start ∧¬ passed ∧¬ stop

∧ current = current ′ ∧ goal = goal ′ ∧ dir = dir ′

RTS+D – p.24/59

Translation of DC

Full DC cannot be translated into PEA: e.g.

¬3(lev ; ℓ = 1 ; lev),

which means

¬ (true ; lev ; ℓ = 1 ; lev ; true)

would need infinitely many clocks.

RTS+D – p.25/59

Translation of DC

However, we can translate a useful subset: counterexample formulae.

Example 1:

¬3(lpassed ; ℓ≤ 3 ; lpassed) :

RTS+D – p.26/59

Translation of DC

However, we can translate a useful subset: counterexample formulae.

Example 1:

¬3(lpassed ; ℓ≤ 3 ; lpassed) :

Phase-Event-Automaton:

p0

true

p1

c1 ≤ 3

passed , c1 := 0

¬ passed ,c1 = 3

¬ passed ¬ passed

RTS+D – p.26/59

Translation of DC

Example 2:

¬3(⌈current 6= goal⌉ ; (⌈current = goal⌉ ∧ ℓ≥ 2 ∧⊟stop))

RTS+D – p.27/59

Translation of DC

Example 2:

¬3(⌈current 6= goal⌉ ; (⌈current = goal⌉ ∧ ℓ≥ 2 ∧⊟stop))

Phase-Event-Automaton:

p0

current 6= goal

p1

current = goal

p2

current = goal

c2 < 2

true

stop

c2 := 0

true

true

true

¬ stop

RTS+D – p.27/59

Automatic Verification

Automata-theoretic approach to verification:

COD satisfies DC ?

↓ ↓

PEA: A(CSP) ‖ A(OZ) ‖ A(DC) ‖ Atest (¬DC)

Is bad state of Atest(¬DC) not reachable ?

RTS+D – p.28/59

Automatic Verification

Automata-theoretic approach to verification:

COD satisfies DC ?

↓ ↓

PEA: A(CSP) ‖ A(OZ) ‖ A(DC) ‖ Atest (¬DC)

Is bad state of Atest(¬DC) not reachable ?

↓

TCS: T (...)

Transition Constraint System

Model checking using ARMC or SLAB or H-PILoT on TCS

RTS+D – p.28/59

Transition Constraint Systems

specify states and transitions by formulas (constraints):

à transition constraints relate pre- and post-state

à no notion of events, no notion of real-time

However, events and clocks can be encoded.

à events: changes of Boolean variables::

stop′ 6= stop

à clocks: real-valued variables á la Lamport:

c ′ = c + len ∧ len > 0

RTS+D – p.29/59

Translation of PEA into TCS

Phase-Event-Automaton:

p0

true
p1

c ≤ 3

passed , c := 0

¬ passed , c = 3

¬ passed ¬ passed

Transition Constraint System:

Tr ⇔ ph = 0 ∧¬passed ∧ c ′ = c + len ∧ ph ′ = 0

∨ ph = 0 ∧ passed ∧ c ′ = len ∧ c ′ ≤ 3 ∧ ph ′ = 1

∨ ph = 1 ∧¬passed ∧ c ′ = c + len ∧ c ′ ≤ 3 ∧ ph ′ = 1

∨ ph = 1 ∧¬passed ∧ c = 3 ∧ c ′ = c + len ∧ ph ′ = 0

RTS+D – p.30/59

Model Checker ARMC

Podelski & Rybalchenko (since 2002)

Abstraction Refinement Model Checker

Characteristics:

à ARMC checks for reachability,

à employs the CEGAR method:
counterexample-guided abstraction refinement,

à uses Craig interpolation for predicate discovery„

à evaluates implications in a decidable fragment
of first-order logic: linear arithmetic over reals,

à extended with uninterpreted function symbols.

à is implemented in SICStus Prolog.
RTS+D – p.31/59

Experimental Results

Hoenicke & Maier (2005):

à The formula Min ≤ current ≤ Max was checked.

ARMC proved validity in 2 minutes.

RTS+D – p.32/59

Experimental Results

Hoenicke & Maier (2005):

à The formula Min ≤ current ≤ Max was checked.

ARMC proved validity in 2 minutes.

à Valid for all possible choices of Min and Max .

RTS+D – p.32/59

Experimental Results

Hoenicke & Maier (2005):

à The formula Min ≤ current ≤ Max was checked.

ARMC proved validity in 2 minutes.

à Valid for all possible choices of Min and Max .

à Property depends on real-time:

If one DC formula is omitted
ARMC found counterexample in 20 seconds.

RTS+D – p.32/59

Model Checker SLAB

Brückner, Dräger, Finkbeiner & Wehrheim (2008)

Dräger, Kupriyanov, Finkbeiner & Wehrheim (2010)

Slicing Abstraction Model Checker

Characteristics:

à SLAB checks for realizability of abstract error paths

à abstracts both states and transitions,

à uses slicing of abstractions and local refinement,

à employs Craig interpolation for predicate discovery,

à checks satisfiability in a decidable fragment
of first-order logic: linear arithmetic over reals,

RTS+D – p.33/59

Abstract Error Paths

not Init

not Init

Bad

T1

T3

T2
not Bad

Init

Init

Bad

not Bad

Does abstract error path correspond to a concrete one ?

RTS+D – p.34/59

Slicing Abstactions

E.g. node elimination if Init ∧ Bad ⇒ false :

not Init

not Init

Bad

T1

T3

T2
not Bad

Init

Init

Bad

not Bad

RTS+D – p.35/59

Local Refinement

If error path does not correspond to a concrete one
Craig interpolation is used to discover a
predicate P for node splitting.

node splitting

not Init

Bad

T11

T31

T2
not Bad

Init

not Init
not Bad

P
T12

T32not P

not Bad

not Init

RTS+D – p.36/59

Termination

not Init

Bad

T11

T31

T2
not Bad

Init

not Init

not Init

not Bad

not Bad

not P

T12

T32

possible further slicing:

P

Checking terminates if

(1) the error path is realizable (system erroneous) or

(2) the slice becomes empty (system correct).

RTS+D – p.37/59

ETCS: Emergency Messages

RTS+D – p.38/59

Components of Case Study

Specification in CSP-OZ-DC J. Faber & Meyer (2006)

Com−
Network

indicationToDriver
driverAck
driverEB

getPosition updatePosition

send

receive

send

receive
Driver RBCTrain

Track

Infinite data types: Position = R, Speed = R≥0

Parameters: Length, TargetSpd , ...

RTS+D – p.39/59

Specification: CSP-OZ-DC

Hoenicke & Olderog (since 2002)

Interface:

chan updPos : [id : {ID}, pos! : Position]

chan compSBI : [loa?, sbi ! : Position]

CSP specifies sequencing of events:

main
c
= Running ‖|HandleEM

Running
c
= updPos.ID ?pos → getLOA.ID ? loa → compSBI ! loa?sbi →

if sbi ≤ pos then . . . else . . .

RTS+D – p.40/59

Specification: CSP-OZ-DC

Object-Z specifies state space ...

sbi : Position

curPos : Position

curSpd : Speed
. . .

... and operations:

com compSBI

∆(sbi)
loa?, sbi ! : Position

sbi ′ = loa?−TargetSpdDist −StopDist −MaxDist

sbi ! = sbi ′

RTS+D – p.41/59

Specification: CSP-OZ-DC

Duration Calculus restricts timing of states and events:

• At least updBound seconds between two updPos events:

¬3 (lupdPos ; ℓ < updBound ; lupdPos)

counterexample trace:

0

1

updPos updPos

updPos

l updBound

Time

RTS+D – p.42/59

Specification: CSP-OZ-DC

RearTrain(ID : TrainID ; StartPos, StartSBI : Position)

chan updPos : [id : {ID}, pos! : Position]

chan compSBI : [loa?, sbi ! : Position]

. . .

CSP
main

c
= Running ‖|HandleEM

Running
c
= updPos.ID ?pos → getLOA.ID ? loa → compSBI ! loa?sbi →

if sbi ≤ pos then . . . else . . .

. . .

OZ
sbi : Position

curPos : Position

curSpd : Speed

. . .

. . .

com compSBI

∆(sbi)

loa?, sbi ! : Position

sbi ′ = loa?−TargetSpdDist −StopDist −MaxDist

sbi ! = sbi ′

DC ¬3 (lupdPos ; ℓ < updBound ; lupdPos)

. . .

RTS+D – p.43/59

Properties Checked

Meyer, Faber, Hoenicke & Rybalchenko (2008)

Two trains:

à RT requirements automatically verified with ARMC.

Example:

¬3(l receive.EmAlert ; ⊟applyEB∧⊟driverAck ∧ reactTime < ℓ)

where reactTime = 8 sec.

Experimental results 2008:

4,900 locations, 99,000 transitions, 47 variables

ARMC: 216 minutes

RTS+D – p.44/59

Properties Checked

Meyer, Faber, Hoenicke & Rybalchenko (2008)

Two trains:

à RT requirements automatically verified with ARMC.

Example:

¬3(l receive.EmAlert ; ⊟applyEB∧⊟driverAck ∧ reactTime < ℓ)

where reactTime = 8 sec.

Experimental results 2008:

4,900 locations, 99,000 transitions, 47 variables

ARMC: 216 minutes

à Collision freedom:

2008: with manual decomposition into RT requirements

RTS+D – p.44/59

ETCS: More Properties Checked

Application: ETCS with arbitrary no. of trains / segments:

Faber, Jacobs & Sofronie-Stokkermans (2010)

simplified CSP-OZ-DC model, but with
2-sorted pointer data structure:

next t next t next t

prev s prev s prev s

next next nexts s s

segm train

prev t prev t
prev t

Verified: invariant property of collision freedom.

RTS+D – p.45/59

Data Verification with H-PILoT

Ihlemann, S. Jacobs & Sofronie-Stokkermans (2009)

Hierarchical Proving by Instantiation in Local Theory extensions

Characteristics:

à Tool H-PILoT supports local theory extensions T0 ⊆ T1.

à Satisfiability of (quantified) formulae in extension T1

is reduced to

satisfiability of ground formulae in the base theory T0.

à Standard SMT solvers check

satisfiability of ground formulae in the base theory T0.

à Hierarchical reasoning / interpolation / QE

for new classes of theories of data types, e.g.,

• recursive functions,

• many-sorted pointer structures.
RTS+D – p.46/59

Syspect Tool
for modelling, specificying and verifying RTS systems with rich data.

Students’ work continued in AVACS project “Beyond Timed Automata”.

Faber, Linker, Olderog, Quesel (2011)

level language purpose

modelling UML profile model M of a real-time system R

with rich data

↓

specification CSP-OZ-DC specification S of R as

the formal semantics of M

↓

verification PEA operational semantics O of S

↓

TCS representation of O as

input for verification engines like

ARMC, SLAB, or H-PILoT
RTS+D – p.47/59

Tool Chain for Syspect Verification

Syspect (System Specification Tool)

Statecharts

Class

Diagrams /

OZ Annotations

DC

Annotations

Test

Formulas

CSP OZ DC

Transition Constraint System

Counterexample System correctVisualisation

Slicing

Plug−In

(−Slice) (−Slice) (−Slice)

MobyPEA

CSP−PEA OZ−PEA DC−PEA

TF−XML

DC−PEA

peatoolkit

Product PEA

ARMC / SLAB

Invariant checking / BMC

H−PILoT

 (local and hierarchical reasoning)

RTS+D – p.48/59

Further Developments

à Explicit Durations

à Parallel Composition

RTS+D – p.49/59

Translatable DC Classes

(1) Full DC cannot be translated into PEA.

(2) Counterexample formulae:
powerset construction takes care of overlapping
timed phases and yields deterministic PEA

PhD thesis Hoenicke (2006)

(3) Explicit Durations:
translation (2) extended by stop watches

In discrete time setting: Availability Automata

Hoenicke, Meyer & Olderog (2010)

RTS+D – p.50/59

Explicit Durations

... can express timed availability requirements:
∫

(speed ≥ target) ≥ 0.9 · ℓ

“For at least 90 % of the time interval, the train meets its target speed.”

... correspond to integrators (stop watches), a source of undecidability

separating TA and LHA.

New translations to automata for reachability analysis:

à Multi-Priced Time Automata continuous time

à Availability Automata (new) discrete time

RTS+D – p.51/59

Availablity Automata

Availabilities in discrete setting (words).

regular availability expressions (rea) 7→ availability automata (aa)

Example: ((up + down)∗.X){up}≥ 1
3

q1 q2

x := 0

up,down

up,down

c(x)

availability
counter x with
test c(x) = ({up} ≥ 1

3
)

Kleene theorem. A language is recognized by a flat rae
if and only if it is accepted by a simple aa.

Powerset construction. Every simple aa can be
determinized and complemented by inverting final
states.

RTS+D – p.52/59

Avoiding Product Construction

Large COD specifications yield (too) many parallel PEA.

ETCS Emergency Messages:
collision freedom for two trains

Full COD specifications yields

18 parallel PEAs.

RTS+D – p.53/59

Avoiding Product Construction

Large COD specifications yield (too) many parallel PEA.

ETCS Emergency Messages:
collision freedom for two trains

Full COD specifications yields

18 parallel PEAs.

Formal decomposition of
COD specification into a
Verification Architecture
and its instantiation:

PhD thesis Faber (2011) EXT

CHK

|= safe

extend

check
fail

pass

EXT FAR

CHK REC

|= asm1

|= asm2

|= safe

extend

check

fail

pass

RTS+D – p.53/59

Structural Transformations

For real-time systems with data
(modelled by Extended Timed Automata), we

à isolate conditions (like independence of transitions
or memorylessness of locations),

à which enable property-preserving transformations
that replace parallel by sequential composition
and eliminate loops.

à This results in systems that allow for an
easier conceptual and automatic analysis.

More details: see lecture by Mani Swaminathan.

RTS+D – p.54/59

Conclusion

Semantic methods + automatic verification techniques

RTS+D – p.55/59

Ref: Specification Language

1. J. Hoenicke & E.-R. Olderog.

CSP-OZ-DC: A combination of specification techniques for

processes, data and time.

Nordic Journal of Computing, 9(4), 2003.

2. J. Hoenicke.

Combination of Processes, Data, and Time.

PhD Thesis, Univ. Oldenburg, 2006.

3. J. Hoenicke, R. Meyer & E.-R. Olderog.

Kleene, Rabin, and Scott are available.

In Proc. CONCUR, LNCS 6269, 2010.

4. M. Möller, E.-R. Olderog, H. Rasch & H. Wehrheim.

Integrating a formal method into a software engineering process

with UML and Java.

Formal Aspects of Computing 20, 2008.

RTS+D – p.56/59

Ref: Verification Engines

1. A. Podelski & A. Rybalchenko.

ARMC: The logical choice for software model checking

with abstraction refinement.

Proc. Practical Aspects of Declarative Languages (PADL), LNCS 4281, 2007.

2. K. Dräger, A. Kupriyanov, B. Finkbeiner & H. Wehrheim.

SLAB: A certifying model checker for infinite state

concurrent systems.

In Proc. TACAS, LNCS 6015, 2010.

3. C. Ihlemann & V. Sofronie-Stokkermans.

System description: H-PILoT.

In Proc. CADE 2009, LNCS, 2009.

4. J. Faber, S. Linker, E.-R. Olderog & J.-D. Quesel.

Syspect – Modelling, Specifying, and Verifying

Real-Time Systeme with Rich Data.

Int. J. Software Informatics 5 (1–2), 2011.
RTS+D – p.57/59

Ref: Automatic Verification

1. J. Hoenicke & P. Maier.

Model-checking of specifications integrating processes,

data and time.

In Proc. Formal Methods (FM), LNCS 3583, 2005.

2. J. Faber & R. Meyer.

Model checking data-dependent real-time properties of the

European Train Control System.

In Proc. Formal Methods in Computer Aided Design (FMCAD), IEEE, 2006.

3. R. Meyer, J. Faber, J. Hoenicke & A. Rybalchenko.

Model checking Duration Calculus: A practical approach.

Formal Aspects of Computing 20, 2008.

4. J. Faber, C. Ihlemann, S. Jacobs & V. Sofronie-Stokkermans.

Automatic verification of parametric specifications with

complex topologies.

In Proc. Integrated Formal Methods (IFM), LNCS 6396, 2010.
RTS+D – p.58/59

Ref: Reduction

1. I. Brückner.

Slicing concurrent real-time system specifications for verification.

In Proc. Integrated Formal Methods (IFM), 2007.

2. J. Faber.

Verification Architectures: Compositional reasoning for

real-time systems.

In Proc. Integrated Formal Methods (IFM), LNCS 6396, 2010.

3. E.-R. Olderog & M. Swaminathan.

Structural transformations for data-enriched real-time systems.

Formal Aspects of Computing 27, 2015.

RTS+D – p.59/59

	Motivation
	Trains
	Planes
	Real-Time Systems
	AVACS Project Group R
	R1: Beyond Timed Automata
	Specification of Processes
	Specification of Data
	Specification of Time
	Parameterized Elevator
	Specification: semredCSP-OZ-DC
	Specification: CSP-semredOZ-DC
	Specification: CSP-semredOZ-DC
	Specification: CSP-semredOZ-DC
	Specification: CSP-OZ-semredDC
	Specification: CSP-OZ-semredDC
	Class Elevator
	 Semantics of CSP-OZ-DC
	Phase-Event-Automata
	PEA Represent Sets of Runs
	Semantic Property of PEA
	Translation of CSP
	Translation of OZ
	Translation of DC
	Translation of DC
	Translation of DC
	Automatic Verification
	 Transition Constraint Systems
	Translation of PEA into TCS
	Model Checker ARMC
	Experimental Results
	Model Checker SLAB
	Abstract Error Paths#I\
	Slicing Abstactions#I\
	Local Refinement#I\
	Termination#I\
	ETCS: Emergency Messages
	Components of Case Study
	Specification: semredCSP-OZ-DC
	Specification: CSP-semredOZ-DC
	Specification: CSP-OZ-semredDC
	Specification: CSP-OZ-DC
	Properties Checked
	ETCS: More Properties Checked
	Data Verification with H-PILoT
	Syspect Tool
	Tool Chain for Syspect Verification#I\
	Further Developments
	Translatable DC Classes
	Explicit Durations
	Availablity Automata
	Avoiding Product Construction
	Structural Transformations
	Conclusion
	Ref: Specification Language
	Ref: Verification Engines
	Ref: Automatic Verification
	Ref: Reduction

