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Overview

Probabilistic model checking

— verification vs. strategy/controller synthesis
— Markov decision processes (MDPs)

s — example: robot navigation

Multi-objective probabilistic model checking
— examples: power management/team-formation

- Stochastic (multi-player) games
— example: energy management
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Permissive controller synthesis



Motivation

- Verifying probabilistic systems...

= — unreliable or unpredictable behaviour
s . failures of physical components
. message loss in wireless communication
s - unreliable sensors/actuators

— randomisation in algorithms/protocols
. random back-off in communication protocols
. random routing to reduce flooding or provide anonymity

- We need to verify quantitative system properties

> — “the probability of the airbag failing to deploy
within 0.02 seconds of being triggered is at most 0.001”

— not just correctness: reliability, timeliness, performance, ...

— not just verification: correctness by construction



Probabilistic model checking

- Construction and analysis of probabilistic models

— state-transition systems labelled with probabilities
(e.g. Markov chains, Markov decision processes)

— from a description in a high-level modelling language

s - Properties expressed in temporal logic, e.g. PCTL:
— trigger — P_; 99 [ F=20 deploy ]
— “the probability of the airbag deploying within
20ms of being triggered is at at least 0.999”

— properties checked against models using
exhaustive search and numerical computation
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Probabilistic model checking

Many types of probabilistic models supported

& . Wide range of quantitative properties, expressible in
3 temporal logic (probabilities, timing, costs, rewards, ...)

- Often focus on numerical results (probabilities etc.)
— analyse trends, look for system flaws, anomalies

« P_o,[F fail] - “the probability of a
failure occurring is at most 0.1”

!

« P_,[F fail] - “what is the probability
of a failure occurring?”
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Probabilistic model checking

Many types of probabilistic models supported

- Wide range of quantitative properties, expressible in

temporal logic (probabilities, timing, costs, rewards, ...)

Often focus on numerical results (probabilities etc.)
— analyse trends, look for system flaws, anomalies

Provides "exact” numerical results/guarantees
— compared to, for example, simulation

Combines numerical & exhaustive analysis

— especially useful for nondeterministic models

Fully automated, tools available, widely applicable

— network/communication protocols, security, biology,
robotics & planning, power management, ...



Markov decision processes (MDPs)

Markov decision processes (MDPs)
— widely used also in: Al, planning, optimal control, ...
— model nondeterministic as well as probabilistic behaviour

Nondeterminism for:
— control: decisions made by a controller or scheduler
— adversarial behaviour of the environment
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— concurrency/scheduling: interleavings of parallel components
— abstraction, or under-specification, of unknown behaviour



Strategies

- A strategy (or “policy”, “scheduler”, “adversary”)
— is a resolution of nondeterminism, based on history
— is (formally) a mapping o from finite paths to distributions
— induces an (infinite-state) discrete-time Markov chain
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. Classes of strategies:
— randomisation: deterministic or randomised
— memory: memoryless, finite-memory, or infinite—-memory
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Example strategy

- Strategy o which picks b then cin s,

— o is finite-memory
and deterministic
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Verification vs. Strategy synthesis

1. Verification

— quantify over all possible
strategies (i.e. best/worst-case)

— P_y; [ F err]: “the probability of an
error occurring is < 0.1 for all strategies”

— applications: randomised communication {err}
protocols, randomised distributed algorithms, security, ...

2. Strategy synthesis
— generation of "correct-by-construction” controllers

— P_y; [ F err]:"does there exist a strategy for which the
probability of an error occurring is < 0.17”

— applications: robotics, power management, security, ...

- Two dual problems; same underlying computation:

— compute optimal (minimum or maximum) values >



Running example

Example MDP
— robot moving through terrain divided in to 3 x 2 grid
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Example - Reachability

Verify: P_, ¢ [ F goal, ]
or
Synthesise for: P_,, [ F goal, ]

U
Compute: P, [ F goal, ]

Optimal strategies:
memoryless and deterministic

Computation:

graph analysis + numerical soln.
(linear programming, value
iteration, policy iteration)

AN
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Example - Reachability

Verify: P_, ¢ [ F goal, ]
or
Synthesise for: P_,, [ F goal, ]

U
Compute: P, ,._,[ F goal, ]= 0.5

Optimal strategies:
memoryless and deterministic

Computation:

X
: N graph analysis + numerical soln.
Xo = X, | / (linear programming, value
. . ) v iteration
3 (east) | / 4n iteration, policy iteration)
X; = 0.5 ~__ ]
(south) 0 ———b x,

0 2/3 1 15
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Example - Reachability

Optimal strategy:

So -
. south

east

. east

Verify: P_, ¢ [ F goal, ]
or
Synthesise for: P_,, [ F goal, ]

U
Compute: P, ,._,[ F goal, ]= 0.5

Optimal strategies:
memoryless and deterministic

Computation:

graph analysis + numerical soln.
(linear programming, value
iteration, policy iteration)
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Linear temporal logic (LTL)

Probabilistic LTL (multiple temporal operators)

— e.g. P> [ (G—hazard) A (GF goal,) ] - "maximum probability
of avoiding hazard and visiting goal, infinitely often?"

— e.9. P> [ —zone; U (zone, A F zone,) ] - "max. probability of
patrolling zones 1 then 4, without passing through 3".

Probabilistic model checking Det. Buchi automaton A,

— convert LTL formula ¢ to forp = G-h A GF g,

deterministic automaton Aq,
(Buchi, Rabin, finite, ...)

— build/solve product MDP M®A,,
— reduces to reachability problem

— optimal strategies are:
. deterministic

. finite-memory



Example: Product MDP construction




Example: Product MDP construction




MDPs - Other properties

- Costs and rewards (expected, accumulated values)

— e.g. R, ..., [ Fend ] - "what is the worst-case (maximum)
expected time for the protocol to complete?”

— e.g. R,_» [ F goal, ] - "what is the optimal (minimum)
expected number of moves needed to reach goal,?"

— optimal strategies: memoryless and deterministic
— similar computation to probabilistic reachability

Expected cost/reward to satisfy (co-safe) LTL formula

— e.g. Ri,_» [ mzone; U (zone, A F zone,) ] - "minimise exp. time
to patrol zones 1 then 4, without passing through 3"

e — optimal strategies: finite—_memory and deterministic
— build/solve product of MDP and det. finite automaton

Nested properties, e.g. using PCTL (branching time logic)
20



Application: Robot navigation

- Navigation planning: [IROS'14]

: : | Task Map
. — MDP models navigation through | scheduler generator
2 an uncertain environment {} @
s s
— LTL used to formally specify i
| Navigation planner
& tasks to be executed I 2 .
3 e o = =
¥ — synthesise finite-memory strategies
to construct plans/controllers Motion planner

— links to continuous-space planner
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Application: Robot navigation

- Navigation planning MDPs
— expected timed on edges + probabilities
; — learnt using data from previous explorations
>

- LTL-based task specification

— expected time to satisfy (one or more) co-safe LTL formulas
— c.f. ad-hoc reward structures, e.g. with discounting

— also: efficient re-planning [IROS'14]; progress metric [|JCAI'T 5]

- Implementation
— MetraLabs Scitos A5 robot + ROS module based on PRISM
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Overview

Multi-objective probabilistic model checking
— examples: power management/team-formation

Stochastic (multi-player) games
— example: energy management

Permissive controller synthesis
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Multi-objective model checking

Multi-objective probabilistic model checking
— investigate trade-offs between conflicting objectives
— in PRISM, objectives are probabilistic LTL or expected rewards

- Achievability queries: multi(P., 4 [ F send ], Rtime_. [ C1])

— e.g. “is there a strategy such that the probability of message
transmission is > 0.95 and expected battery life > 10 hrs?”

Numerical queries: multi(P,,.._.[ F send], Rtime_, [ C])

— e.g. “maximum probability of message transmission,
assuming expected battery life-time is > 10 hrs?”

Pareto queries: =
— multi(P,,,_,[ F send], Rime__ .[C]) © t:__\\
— e.g. "Pareto curve for maximising o "
probability of transmission and ° ‘;\‘
expected battery life-time” [ "« WA obi, 5



checking
lti-objective model
Multi-

~~~~~---




Multi-objective model checking

Optimal strategies:
— usually finite-memory (e.g. when using LTL formulae)
— may also need to be randomised

- - Computation:

— construct a product MDP (with several automata),
then reduces to linear programming [TACAS'07, TACAS'T 1]

— can be approximated using iterative numerical methods,
via approximation of the Pareto curve [ATVA'12]

Extensions [ATVA'l2]

— arbitrary Boolean combinations of objectives
. e.g. ;=\, (all strategies satisfying y, also satisfy p,)
. (e.g. for assume-guarantee reasoning)
— time-bounded (finite-horizon) properties 57
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Example - Multi-objective

I i —T— T ¥,
0.6 0.8 1

| |
0O 0.2 0.4

- Achievability query
— P.y, [ G —hazard ] A Py, [ GF goal, ] ? True (achievable)

Numerical query
— Prax_> [ GF goal, 1 such that P.,, [ G —hazard ] ? ~0.2278

Pareto query

— for P [ G —hazard ] A P,,.x» [ GF goal, ]? 28

max="?



Example - Multi-objective

Strategy 1
| (deterministic)
i Sy - east

S, : south

..." 52 N
~ 53 —
S, . east
St . west
Y,
. 51 Y, = G —hazard
; 0.4 .. W2 =GFgoal
0.3- T
0.1-
0 I A B B B m B
0 02 04 06 0.8 1
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Example - Multi-objective

Strategy 2
| (deterministic)
i Sy - south

S, : south

—.“ 52 N
~ 53 i —
S, . east
St . west
Y,
0.51 Y, = G —hazard
. 0.4 TT>.. W2 =CFgoal
~ 03_ \\\\\
0.14 :
0 I A B B B m B
0 0.2 04 06 0.8 1
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Example - Multi-objective

Optimal strategy:
| (randomised)
: So - 0.3226 : east
»
0.6774 : south
i s; : 1.0 : south
~ 52 -
53 .
S, : 1.0 : east
) S; : 1.0 : west
. Si P, = G —hazard
‘ 0.4 .. W2 =GFgoal
0.3- RV
0.1-
0 I S e e m w V)
0 0.2 04 06 0.8 1
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Multi-objective: Applications

Synthesis of controllers for
dynamic power management [TACAS'11]

IBM TravelStar VP disk drive
« switches between power modes:
« active/idle/idlelp/stby/sleep

il

=
1
' MDP model in PRISM:
W
* power manager TR
i J s AT
« disk requests jono] LRSS

o
o
o

s request queue

= =
o
=y
=3

* power usage

o
o
o

S5
SSOORSIILS
S SOONSSONSLT S

OSSO S555S7
SN2 200
1.5 W%
° S 150 o
“e% 1.0 100 o 5tome
a 108°

Multi-objective: %y 0.5750

min power consumption

=
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ex?ecte

"minimise energy consumption,
subject to constraints on:

(i) expected job queue size;

(ii) expected number of lost jobs

Synthesis of team
formation strategies
[CLIMA'11, ATVA'12]

Ay

Pareto curve:

x="probability of
completing task 1%
y="probability of
completing task 2";
z="expected size of
successful team" 32



Overview

- Stochastic (multi-player) games
— example: energy management
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Stochastic multi-player games (SMGs)

- Stochastic multi-player games a
— players control states; choose actions
— models competitive/collaborative behaviour

— applications: security (system vs. attacker),
controller synthesis (controller vs. environment),
¥ distributed algorithms/protocols, ...

Property specifications: rPATL

— ({1,2P) P_yos [ F=*> done ] : "can nodes 1,2 collaborate so that
the probability of the protocol terminating within 45 seconds
is at least 0.95, whatever nodes 3,4 do?"

— formally: «C»p : do there exist strategies for players in C
such that, for all strategies of other players, property g holds?
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Model checking [TACAS'12,FMSD'13]
— zero sum properties: analysis reduces to 2-player games
— PRISM-games: www.prismmodelchecker.org/games 34




Example - Stochastic games

- Two players: 1 (robot controller), 2 (environment)
— probability of s;-south—s, is in [p,q] = [0.5-4, 0.5+A]

{goal;}

west

@ Player 1 S; | Player 2 e




Example - Stochastic games

- Two players: 1 (robot controller), 2 (environment)
— probability of s,-south—s, is in [p,q] = [0.5-4, 0.5+A]

{goal;}

west

Player 2

rPATL: <{1}) P,.....[ Fgoal, ]

Optimal strategies:
memoryless and deterministic

Computation: graph analysis
& numerical approximation
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Example - Stochastic games

- Two players: 1 (robot controller), 2 (environment)
— probability of s,-south—s, is in [p,q] = [0.5-4, 0.5+A]

{goal;}

west

Player 2

rPATL: <{1}) P,.....[ Fgoal, ]

Optimal strategies:
memoryless and deterministic

Computation: graph analysis
& numerical approximation

east

south

Max. prob. F goal,
o
w
1

—r— T T 1> A
0 0.10.20.30.40.5



Example: Energy management

- Energy management protocol for Microgrid

— Microgrid: local energy management ™ N N W
: i 2
& — randomised demand management protocol @ i
g S |
— random back-off when demand is high (A

+ Original analysis [Hildmann/Saffre'11]
— protocol increases "value" for clients
— simulation-based, clients are honest

« Our analysis
— stochastic multi-player game model
— clients can cheat (and cooperate)
— model checking: PRISM-games ;

Al
Power demand

3 6 9 12 15 18 21 24
Time of the day (hours)
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Example: Energy management

- Exposes protocol weakness « We propose a simple
, — incentive for clients fix (and verify it)
» to act selfishly — clients can be punished
3
i Value per client Value per client, with fix
20 _ 20 -
- All follow alg. —
----- All follow alg.
- No use of alg. - =
% el = :> é 157 - Deviations of
o) Deviations of 5 varying size
§' varying size g
© 10 - C_?S 10 -
.“ > >
5 T T T T — . | 5 —

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Number of clients Number of clients
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Overview

- Permissive controller synthesis
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Permissive controller synthesis

+ Multi-strategy synthesis [TACAS'14]
— for Markov decision processes and stochastic games
— choose sets of actions to take in each state
— controller is free to choose any action at runtime
8 — flexible/robust (e.g. actions become unavailable or goals change)

- Example

Multi-strategy:
Sy - east or south
s, : south

5PN —

AN

Sy 1 -
s, . east

Sc . west
41




Permissive controller synthesis

Multi-strategies and temporal logic

— multi-strategy O satisfies a property P_, [ F goal ] iff
any strategy o that adheres to O satisfies P_, [ F goal ]

- We quantify the permissivity of multi-strategies
¥ — by assigning penalties to each action in each state
— a multi-strategy is penalised for every action it blocks
— static and dynamic (expected) penalty schemes

Permissive controller synthesis
— d a multi-strategy satisfying P_, ¢ [ F goal, ] with penalty < ¢?
— what is the multi-strategy with optimum permissivity?
— reduction to mixed-integer LP problems

AN

— applications: energy management, cloud scheduling, ...
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Conclusion

- Probabilistic model checking
— verification vs. controller synthesis
— Markov decision processes, temporal logic, applications

- Recent directions and extensions
— multi-objective probabilistic model checking
— model checking for stochastic games
— permissive controller synthesis

— Challenges
— stochastic games: multi-objective, equilibria, richer logics
— partial information/observability

WA

— probabilistic models with continuous time (or space)
— scalability, e.g. symbolic methods, abstraction
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Thanks for your attention

More info here:
www.prismmodelchecker.org/lectures/avacs15/




