
Fault-Tolerant Workstation Cluster

AVACS S3 Benchmark⋆

1 Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79085 Freiburg, Germany
2 Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany

3 Universität des Saarlandes, 66041 Saarbrücken, Germany

1 Introduction

In [3] we have briefly introduced a trajectory that leads from labelled transition systems (LTSs)
to interactive Markov chains (IMCs) [6], and subsequently transforms these IMCs to continuous-
time Markov decision processes (CTMDPs) as, for instance, given in [11]. These CTMDPs are
ensured to be analysable by the algorithm proposed in [1]. More detailed descriptions of this
trajectory can be found in [9,7], but we like to highlight, that the models that we generate must
ensure a property called uniformity. Intuitively, the time spent in a state of a uniform model is
on average the same for all states.

Here, we apply the trajectory to the fault-tolerant workstation cluster (FTWC) that has been
proposed in [5]. The general design of the workstation cluster is shown on the top of Figure 1.
It consists of two sub-clusters which are connected via a backbone. There are N workstations in
each sub-cluster which are connected together in a star topology with a switch as central node.
The switches provide additionally the interface to the backbone.

Each of the components in the fault-tolerant workstation cluster can break down (fail) and
then needs to be repaired before becoming available again. The mean time to failure and the
mean repair time for each component in isolation are depicted on the bottom of Figure 1. They
correspond to mean durations of exponential distributions.

There is a single repairunit for the entire cluster, not depicted in Figure 1, which is only capable of
repairing one failed component at a time. Essentially, this means that when multiple components
are failed, they must be handled in sequence, and there is a decision to be taken which of the failed
components the repairunit is assigned to first (or next). This inherent nondeterminism in the
specification has been ignored in the original model [5] and in subsequent work, e. g., the FTWC
model used and generated by the model checker Prism [8]. The nondeterministic decision has
been approximated by using a very fast, but probabilistic decision, encoded via the use of very
high rates (of exponential distributions) assigned to the decisive transitions. These high rates are
absent in the original problem statement where the repairunit is assigned nondeterministically.

2 Modelling of components

In this section we describe how the singular components of the FTWC are modelled. We start
by describing the LTSs representing the untimed behaviour of the workstations, switches, the
backbone and the repairunit. Afterwards, we describe the time constraints, which are used to
weave timed behaviour into the model [9].

⋆ http://www.avacs.org

N

...

2

1

left

switch

backbone

right

switch

N

...

2

1

fail repair

Workstation 500 h 0.5 h

Switch 4000 h 4 h

Backbone 5000 h 8 h

Fig. 1. FTWC with mean fail and repair times.

Labelled transition systems. There are six basic ingredients, namely the workstations (left and
right), the switches (left and right), the backbone and the repairunit. Their behaviour is modelled
as simple LTSs. In Figure 2 we depict two different LTSs, where the initial states are indicated
by the short incoming arrows. The LTS of the repairunit is shown on the left hand side, where we
depicted for the sake of readability only two transitions. In fact, there are five parallel transitions
emanating the initial state labelled with, e. g., g wsL, and five transitions ending in the initial
state labelled with, e. g., r wsL. For example, action g wsL indicates that the repairunit is grabbed
by one of the failed left workstations, and r wsL indicates that it is again released by that
workstation once it is repaired.

The LTSs for workstations, switches and the backbone are very similar in nature, their general
structure is given on the right hand side of Figure 2. Each of them can fail and has to grab

the repairunit afterwards. Only when the repairunit is assigned to that particular component, a
repair can be performed. Once the component is repaired, the repairunit will be released and can
be assigned to another failed component. For a particular component, e. g., the left workstations,
the actions grab and repair in Figure 2 have to be replaced by the according actions, e. g., by
g wsL and r wsL, respectively (this is an instance of process algebraic relabelling).

Time constraints. For each of the components the occurrence of fail and repair is governed by
delays. These delays have to be incorporated in the model by composition.

We exemplify the construction of time constraints and the incorporation of these time constraints
into the LTS for the (left) workstations as follows: The LTS of a workstation is shown leftmost
in Figure 3. In the middle of Figure 3 we have depicted the time constraint for action fail,

Repairunit

g i

r i

i ∈ {wsL, wsR, swL, swR, bb}

Workstations, switches, backbone

fail

grab

repair

release

Fig. 2. Repairunit, workstation, switch and backbone

Left workstations

fail

g wsL

repair

r wsL

Time constraint fail

0.002
0.002

failr wsL

0.002

Time constraint repair

2

g wsL

2repair

2

Fig. 3. Left workstation and time constraints

and rightmost in Figure 3 the time constraint of action repair is shown. For example, the time
constraint for fail is started in the initial state of the complete system description. Once the
delay, governed by a negative exponential distribution with rate 0.002 = 1

500
, is finished, the left

workstation fails and awaits to be repaired. When the repairunit is released, the delay is started
over again. On the other hand, the delay of action repair, governed by a negative exponential
distribution with rate 2 = 1

0.5
, is started once the repairunit has been grabbed by the failed left

workstation.

Technically, the time constraints are generated from a phase-type distribution and sets of actions
characterising the synchronisation potential that is used to weave the time constraint into the
model. We refer the interested reader to [9] where more details can be found.

3 Compositional generation

Components. All of the components, including timed behaviour, are constructed in fairly the
same way. We exemplify this for the (left) workstations. Consider again the workstation and the
time constraints depicted in Figure 3. The overall description of a left workstation is obtained
by parallel composition of the LTS with both time constraints. The synchronisation set is given
by {r wsL, g wsL, repair, fail}. The result of this composition is depicted in Figure 4 (left). In
the initial state the workstation is working, and the delay until a failure occurs is started. Once
this delay has finished, action fail indicates the failure itself, and the workstation tries to grab
the repairunit (g wsL). Now, the delay until repair is started, and once it has finished, the
workstation is repaired (repair) and releases the repairunit (r wsL). However, for the complete
system description the actions fail and repair are not of importance anymore and can thus be
hidden. The resulting uniform IMC (uIMC), after a minimisation step, is depicted on the right
hand side of Figure 3.

System model. The FTWC is composed out of the components for the workstations, switches, the
backbone and the repairunit. First, the workstations, switches and the backbone are constructed
as exemplified above and, after hiding actions fail, repair they are composed in parallel (with
empty synchronisation set). Note, that uniformity is ensured [9].

The resulting uIMCs are then minimised, and composed with the repairunit on the synchro-
nisation alphabet {g i, r i}, for i ∈ {wsL, wsR, swL, swR, bb}, which yields the overall system

2

0.002

2.002

fail

2.002

g wsL

0.002

2

2.002

repair

2.002

r wsL

2

0.002

2.002

g wsL

0.002

2

2.002

r wsL

Fig. 4. (Left) workstation with timed behaviour

description of the FTWC (modulo another hiding and minimisation step) as an IMC. From [9]
it is ensured that this IMC is uniform, too.

Technicalities. The compositional construction of the FTWC has been carried out using the
Cadp toolbox [4], and here especially the svl scripting language [12] and the bcg min tool [2].
For N = 14 we obtained an intermediate state space with 5 · 106 states and 6 · 107 transitions.
This model then reduces to a uIMC with 6 ·104 states and 5 ·105 transitions. For N = 16 we were
not able to construct the FTWC in a compositional way. The intermediate state space generation
stopped with an incomplete system description that already took 2 GB of hard disk memory.

Therefore we have generated larger models with Prism [8]. Prism generates a CTMC of the
FTWC example in which the nondeterminism is replaced by uniform probability distributions
using a fixed large rate Γ . In order to retain the original nondeterminism, we replaced this
particular Γ by an interactive transition and applied afterwards the transformation. We made
sure that for N ≤ 14 equivalent models were obtained via Cadp and Prism – up to uniformity.

4 Results

In this section we report on the results and statistics we obtained when analysing the FTWC.
We focus on the performance of the transformation and of the analysis algorithm.

As in [5] we say that our system operates in premium quality when there are at least N work-
stations operational. These workstations have to be connected to each other via operational
switches. When the number of operational workstations in one sub-cluster is below N the pre-
mium quality can be ensured by an operational backbone under the condition that there are N

operational workstations in total. We are interested in the following property: “What is the worst

case probability to hit a state in which premium service is not guaranteed within t time units?”

for which we report results and statistics.

In Table 1 we have collected different statistics of the transformation for different N . Columns
2-6 display the number of states, number of transitions and the memory usage of the CTMDP
representation of the FTWC. The depicted numbers are given for the strictly alternating IMCs
(which comprises precisely what needs to be stored for the corresponding CTMDP), and thus are
differentiated in interactive states/transitions and Markov states/transitions, see [9] for details.
In column 7 the time for the transformation (from uIMC to uCTMDP) is shown.

In Table 2 we collect statistics about the implementation of the timed reachability algorithm
on uniform CTMDPs [1]. For example, column three shows the statistics for a time bound of

States # Transitions Transf.
N Inter. Markov Inter. Markov Mem time (s)

1 110 81 155 324 7.4 KB 0.21
2 274 205 403 920 24 KB 0.27
4 818 621 1235 3000 79 KB 0.30
8 2770 2125 4243 10712 296 KB 0.39
16 10130 7821 15635 40344 1.2 MB 0.83
32 38674 29965 59923 156440 4.6 MB 2.61
64 151058 117261 234515 615960 19 MB 10.19
128 597010 463885 927763 2444312 78 MB 42.51
256 2373650 1845261 3690515 9738264 325 MB 164.28

Table 1. Model sizes, memory usage and runtime of the transformation

100 h. In the second row of column three the computation time for N = 1 is shown, in row three
we display the number of iterations, and the fourth row shows the corresponding reachability
probability. We have generated the statistics by our implementation of the algorithm (which is
integrated into the Mrmc model checker [10]). Even for large models (N = 256) and large time
bounds (t = 50000 h), the computation is with 27 minutes remarkably fast.

In Figure 5 we depict the reachability probabilities for different N and varying time bounds. As
can be observed, for large N the probability that premium service is ensured decreases faster as
for small N .

Fig. 5. Reachability probabilities of the FTWC

CTMDP and CTMC. Finally, we show in Figure 6 graphs for N = 4 and N = 128 in which we
compare the worst case probabilities obtained by the CTMDP algorithm with the probabilities
obtained from CTMC analysis. As evident in the plot, the CTMC analysis consistently over-
estimates the true probabilities (computed with Mrmc, confirmed with Cadp). This is quite

N Memory 100 h 1000 h 2000 h 5000 h 10000 h 30000 h 50000 h

1 744 KB
0s 0s 0s 0s 0s 0s 0s Time

343 2320 4455 10723 21030 61816 102375 Iter.
0.00 0.01 0.02 0.04 0.09 0.24 0.36 Prob.

2 776 KB
0s 0s 0s 0s 0s 0s 0s Time

343 2325 4463 10743 21071 61938 102577 Iter.
0.00 0.01 0.02 0.05 0.09 0.25 0.39 Prob.

4 888 KB
0s 0s 0s 0s 0s 0s 1s Time

344 2333 4480 10785 21153 62181 102981 Iter.
0.00 0.02 0.04 0.09 0.18 0.44 0.62 Prob.

8 1.22 MB
0s 0s 0s 0s 0s 1s 2s Time

346 2351 4514 10868 21317 62668 103790 Iter.
0.00 0.04 0.07 0.18 0.32 0.69 0.86 Prob.

16 2.56 MB
0s 0s 0s 1s 1s 3s 5s Time

349 2385 4581 11033 21645 63642 105408 Iter.
0.01 0.08 0.14 0.32 0.54 0.91 0.98 Prob.

32 7.75 MB
0s 0s 1s 2s 3s 10s 16s Time

355 2454 4716 11364 22300 65589 108643 Iter.
0.01 0.14 0.26 0.53 0.78 0.99 1.00 Prob.

64 27.38 MB
0s 2s 4s 9s 17s 51s 1m 23s Time

368 2592 4986 12026 23611 69482 115111 Iter.
0.03 0.23 0.41 0.73 0.93 1.00 1.00 Prob.

128 105.32 MB
1s 8s 16s 38s 1m 15s 3m 39s 6m 4s Time

394 2866 5524 13347 26229 77264 128042 Iter.
0.04 0.33 0.56 0.87 0.98 1.00 1.00 Prob.

256 415.68 MB
7s 38s 1m 12s 2m 53s 5m 39s 16m 35s 27m 17s Time

445 3413 6597 15984 31458 92812 153886 Iter.
0.05 0.43 0.67 0.94 1.00 1.00 1.00 Prob.

Table 2. Timed reachability analysis of the FTWC

remarkable, because the CTMDP algorithm accounts for the worst-case. Nothing worse is pos-
sible in the model, and we would thus expect, that this probability will be higher than in a
corresponding CTMC model of the system. This overestimation, which indicates a modelling
flaw in the CTMC approach, can be explained as follows. When replacing a nondeterministic
selection by high rates, certain paths become possible (though with low probability), that in
a nondeterministic interpretation would be absent, and thus not contribute to the reachability
probability. For a more detailed explanation of this phenomenon we refer the interested reader
to [9].

References

1. C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Efficient Computation of Time-Bounded
Reachability Probabilities in Uniform Continuous-Time Markov Decision Processes. TCS: Journal

on Theoretical Computer Science, 345(1):2–26, 2005.
2. BCG MIN. Project Website, March 2006. http://www.inrialpes.fr/vasy/cadp/man/bcg min.html.
3. E. Böde, M. Herbstritt, H. Hermanns S. Johr, T. Peikenkamp, R. Pulungan R. Wimmer, and

B. Becker. Compositional Performability Evaluation for Statemate. In QEST: Conference on Quan-

titative Evaluation of SysTems, pages 167–176. IEEE Computer Society, 2006.
4. CADP. Project Website, Aug 2006. http://www.inrialpes.fr/vasy/cadp/demos.html.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5000 10000 15000 20000 25000 30000

P
ro

ba
bi

lit
y

Time Bounds

N = 4

CTMDP
CTMC

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100 200 300 400 500 600 700 800 900 1000

P
ro

ba
bi

lit
y

Time Bounds

N = 128

CTMDP
CTMC

Fig. 6. Comparing CTMC and CTMDP probabilities

5. B. R. Haverkort, H. Hermanns, and J.-P. Katoen. On the Use of Model Checking Techniques for
Dependability Evaluation. In SRDS: Symposium on Reliable Distributed Systems, pages 228–237.
IEEE Computer Society, 2000.

6. H. Hermanns. Interactive Markov Chains and the Quest for Quantified Quality, volume 2428 of
LNCS. Springer, 2002.

7. H. Hermanns and S. Johr. Uniformity by Construction in the Analysis of Nondeterministic Stochastic
Systems. In DSN: International Conference on Dependable Systems and Networks, pages 718–728,
2007.

8. A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A Tool for Automatic Verification
of Probabilistic Systems. In TACAS: International Workshop on Tools and Algorithms for the

Construction and Analysis of Systems, LNCS, pages 441–444. Springer, 2006.
9. S. Johr. Model Checking Compositional Markov Systems. PhD thesis, Universität des Saarlandes,

2007. submitted.
10. J.-P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model checker. In QEST: Conference

on Quantitative Evaluation of SysTems, pages 243–244. IEEE Computer Society, 2005.
11. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,

1994.
12. SVL. Project Website, March 2006. http://www.inrialpes.fr/vasy/cadp/man/svl.html.

