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A Lane Change Assistance System: Cooperation and Hybrid

Control

Boris Wirtz Tim Strazny Astrid Rakow Jan Rakow

July 21, 2011

Abstract

Automated Highway Systems (AHS’s) are considered as a key technology that promises
increased safety, reduced energy consumption and optimized traffic flow. Safe and dependable
operation of AHS’s is of paramount importance and requires the application of rigid formal
methods at design time. In this report we present a model for a lane change assistance system
which is meant to serve as a foundation for benchmarks boosting theoretic and algorithmic
advances in formal verification of the challenging class of cyber-physical systems. The assistance
system implements an autonomous lane change manoeuvre conducted in cooperation with other
communicating agents. The model implements a layered design for traffic agents where aspects
of communication and autonomous control are described as real-time and hybrid systems,
respectively, which are intertwined by synchronous message passing.
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1 Introduction

Automated Highway Systems (AHS’s) are considered a key technology that promises increased safety,
reduced energy consumption and optimized traffic flow [9]. Consider for example the prominent
application of car platooning [4, 9], where vehicles drive organized in densely spaced platoons of
limited length. By the deployment of autonomously driving communicating vehicles sensor-actuator
response times can be reduced dramatically so that the slipstream of vehicles driving in front can
be utilized. Low relative velocities and maintenance of safe distances within platoons attenuate the
impact of inner-platoon accidents and together yield an increase in safety. Routing and formation
of platoons take into account events such as obstacles, road works or rush hours, thus ensuring an
optimized traffic flow.

Intelligent transportation systems in general are large scale distributed systems that expose
characteristics of both hybrid systems and dynamic communication systems. The design of such
typically safety critical systems is challenging for several reasons: The overall system is composed
of an unbounded and varying number of autonomous traffic agents that dynamically detect other
nearby agents or roadside equipment, respectively. By this, not only the number of agents is variable
but also the communication topology is changing over time.
Autonomous manoeuvres such as lane changes (which may be either conducted as an outcome of
negotiations with other agents or roadside equipment), and persistent services such as following
a car or staying on a lane, necessitate sophisticated controllers that not only ensure safe travel
but also comfort to the passengers. Fully operational AHS’s are widely considered to become the
final result of an evolutionary process integrating assistance systems to more and more complex
Advanced Driver Assistance Systems (ADAS’s). Since these systems are intricate and safety critical,
the application of formal methods becomes indispensable.

In this report we present a formal model of a Lane Change Assistance System (LCAS) that
obeys layered design principles [9, 5]. Our modelling efforts aim to build a multi-layered hybrid
system model of a relevant domain, to study the characteristics of industrial hybrid systems and
thereby to provide a realistic model for benchmarks of formal verification techniques.

Model Overview The basic structure of the model presented in this report is depicted in Fig. 1.
The inherent complexity of AHS system development necessitates layered design approaches to hide
complexity of lower level layers by providing abstract interfaces to the higher layers [9]. So a vehicle
controller is conceptually divided up into an autonomous layer (AUT) and a protocol layer (PROT)
and a communication layer (COM). The autonomous layer (AUT) provides basic vehicle control and
sensor access and by this the ability to actually conduct manoeuvres such as following another car
in safe distance or approaching a reference line. The protocol layer coordinates manoeuvres—such
as a lane change—among several agents. The communication layer provides services for inter-agent
communication.

In systems performing more than one manoeuvre to accomplish a targeted goal, a further layer,
sometimes called deliberative [5] layer, is added to the system architecture to coordinate the different
manoeuvres.

The key idea for the lane change protocol is that a car which intends to change into a neigh-
bouring lane, asks vehicles on the target lane to help, i.e. establish and maintain a safety distance
to it for a certain amount of time. Then the initiator will enter the lane in-between the helper and
the helper’s car ahead. While the helper ensures a safety distance to the initiator, the initiator itself
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Communication Layer (COM)

Protocol Layer (PROT)

Translation Layer

Autonomous Layer (AUT)

Mental Map Actuators

Sensors

Communication Layer (COM)

Protocol Layer (PROT)

Translation Layer

Autonomous Layer (AUT)

Mental Map Actuators

Sensors

car1 car2

. . .

Physical Environment (PENV)

Figure 1: Model Architecture.

will maintain a safety distance to its car ahead—if any—and it will establish and maintain a safety
distance to the helpers car ahead—if any.

v
initiator

v′helper v

diadhi

dha

hasHelper

Figure 2: The Lane Change Manoeuvre. The initiator will enter the target lane between its helper
and the helper’s car ahead. The lane change can proceed when the distances dha, dhi and dia at
least equals the respective safety distances.

Autonomous Layer The Autonomous Layer (AUT) provides a library of reactive skills and
encapsulates access to actuators and sensors. The controllers implement longitudinal and lateral
vehicle control based on a vehicle model as in Fig. 3. A vehicle on the track is characterized by
orientation angle, βori, its lateral and longitudinal position, x and y, vehicle dimensions, width,
length and vehicle velocity v. The controllers regulate the vehicle velocity by discretely adjusting its
acceleration. The steering controllers determine paths of line segments connected with tangential
circular arcs. Vehicle dynamics are constrained by constants such as maximal and minimal velocity
or acceleration, a maximal centrifugal force that may occur or a vehicle’s turning radius. The
vehicle’s own position and those of the surrounding vehicles are determined by on-board sensors
and are accessible via AUT.
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reference line

voffset βori
Figure 3: Car dimensions. Controllers of the
AUT layer refer to offset, orientation βori and
velocity v and distances to other cars.

Protocol Layer The Protocol Layer (PROT) coordinates the vehicle’s behaviour with respect
to other vehicles. When a car wants to perform a lane change, it becomes an initiator. It then may
ask other agents to build a gap in order to facilitate a successful lane change. The three main steps
of the initiator protocol are (1) determine feasible helpers (2) request help (3) perform lane change
/ abort. An agent asked for help obeys a helper protocol. The protocols are conditioned sequences
of communications with other agents or AUT service calls. A snapshot of a lane change is depicted
in Fig. 2. As soon as the initiator has perceived the sufficiency of size of the gap between its helper
and the car directly ahead of the helper, it starts changing lane while continuously maintaining
safety distances to the vehicles in front. The helper has agreed to establish and maintain the gap
to the initiator. Note that the initiator vehicle maintains a link to the helper. This logical topology
is a result of negotiation performed by PROT.

Physical Environment The physical environment (PENV) describes the time-continuous evo-
lution of the vehicles on the road. Inputs of the physical environment are the actuator values of
the controllers as defined in the AUT layer. Discrete jumps are performed for instance to represent
which car is currently on which lane.

Translation Controllers and Sensors Translation controllers act as a glue between the
protocol layer and the autonomous layer. They translate the messages of the protocol layer for
the autonomous layer and generate messages for the protocol triggered by the autonomous layer.
Sensors read the current state of a vehicle from the environment. They have exclusive access to the
real world status of a vehicle. The sensors’ readings constitute the vehicle’s internal model of its
environment, its mental map.

Prediction As a crucial part of the LCAS proposed, the vehicle has to decide which vehicle
to cooperate with before a lane change manoeuvre is being initiated. To this end, we developed
a prediction method that for a given traffic situation evaluates the feasibility of a lane change
manoeuvre and finds the best suitable helpers. The predictions are based on approximate relative
velocities and distances with respect to the vehicle’s state and dynamics.

Outline Section 2 introduces the autonomous layer in detail. In Sect. 3 a coordination protocol
for a lane change is presented. The translation controllers are described in Sect. 4 and sensors in
Sect. 5. Section 6 describes the physical environment. Model extensions are discussed in Sect. 7.
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2 Autonomous Layer

The autonomous layer (AUT) provides reactive control mechanisms based on continuous space and
time representations. Vehicle behaviour is defined by a set of basic skills that are called from higher
level layers. Such basic skills are for example keeping a certain velocity, keeping a certain distance
to some vehicle or steering into a neighbouring lane. In this section we present the controllers of
the AUT layer providing all reactive skills required for an LCAS. In Sect. 3 we will show how these
skills are used by the protocol layer PROT.

Assumptions Following assumptions have been made. We assume that all cars on a highway
are identical, which means they have the same physical dimensions and also the same abilities to
accelerate and to decelerate. We model simplified car dynamics. The controllers set the acceleration
and the motion of a car directly. A car’s motion is set to be either a straight line or a circular
arc, so that paths are made up of line segments and circular arcs (cf. Fig. 4). Transitions between
straight lines and different circular arcs are smooth, i.e. without sharp bends. When a car follows
its current movement circle, its centreline is tangent of that movement circle.

movement circle

movement line

Figure 4: A vehicle’s line of motion.

PROT

AUT

MM

Sensors

PENV

v, dist,
βori,offset

accctrl,
mcctrl

Actuators

AUT

Figure 5: Interface of AUT to PENV.

AUT and PENV Figure 5 illustrates the structure of AUT. The sensors perceive the vehicle’s
velocity, v, its distance to some reference object, dist, the distance to the mid of a reference lane,
offset, and its orientation, βori. Based on these readings AUT determines which values to set as
acceleration, accctrl, and as next movement, mcctrl. Since sensor data is provided only periodically,
the mental map reflects a blurred perception of the real world traffic situation only. In this document
we do not consider this phenomena or problems arising from inaccuracies of sensor readings or
disturbances and instead assume continuous sensor data and that the vehicle behaves as specified
by the controller. In Sect. 7 we discuss variants and extensions to the sensor modelling.

2.1 Controller

The fundamental controller architecture is depicted in Fig. 6. The Error mode indicates uncontrol-
lable situations such as violation of a safety distance. In such cases the controller exits its current
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mode and enters the Error mode where driver interaction is necessary to resolve such a situation.
In normal situations the vehicle is controlled by a Steering Controller and a Velocity Controller—
both are loosely coupled and operate in parallel. The Velocity Controller itself is composed of
a Keep Velocity Controller that is active only if no other car is in front of the vehicle and the
Approach Velocity Controller, which is active if the car has to adapt its speed to some other car in
order to maintain a required distance to it.

Control

NormControl

Steering

Velocity

KeepVelocity

ApproachVelocity

Error

Figure 6: Controller of the Autonomous Layer.

2.1.1 Velocity Controller

The Velocity Controller (VC) adjusts the vehicle’s velocity. As depicted in Fig. 6 the VC is composed
of the Keep Velocity Controller (KVC) and the Approach Velocity Controller (AVC).

The KVC is designed to reach and keep a given speed, vgoal. The AVC has a two dimensional
set-point, (vgoal, distgoal), consisting of speed and distance values. It adjusts the acceleration to reach
and keep a certain speed and a certain distance to a (possibly moving) reference object.

The KVC is hence activated when the agent car does not need to care about other cars. When
the agent approaches some other car, the AVC is activated and ensures that safety distances are
respected. The AVC also plays an important role for the lane change manoeuvre even if the agent
has no car in front, since it may be necessary to accelerate or decelerate to reach a targeted gap.

Keep Velocity Controller (KVC) The KVC, depicted in Fig. 7, is responsible for keeping the
velocity at approximately vgoal. To reach the desired velocity vgoal with an allowed deviation εv, it
accelerates or decelerates depending on whether the agent is slower than vgoal − εv or faster than
vgoal + εv. When a car accelerates it has to check whether it is feasible to steer in line with the lane
again, otherwise the car has to keep its velocity. The function accIsFeasible(v,acc,β,offset) evaluates
to true iff the agent can comfortably follow a movement circle to get in the direction of the traffic
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setpoint: v ∼εv vgoal
actuator: accctrl; influences: v, dist;
sensor: v, βori, offset
const: acccomf, decelcomf, εv, Fmax, lanewidth

KeepVelocityController

WaitToAccelerate

accctrl = 0

(v < vgoal ∧
¬accIsFeasible(v,

acccomf,βori, offset))

Accelerate

accctrl = acccomf

(v < vgoal ∧
accIsFeasible(v,

acccomf, βori, offset))

Keep

accctrl = 0

vgoal − εv ≤ v ≤ vgoal + εv

Decelerate

accctrl = decelcomf

v > vgoal

v = vgoal / accctrl:=0v < vgoal / accctrl:=acccomf
v < vgoal ∧
¬accIsFeasible/
accctrl:=0

v > vgoal /
accctrl:=decelcomf

v ≥ vgoal /
accctrl:=0

v < vgoal − εv /
accctrl:= acccomf

¬accIsFeasible/
accctrl := 0

accIsFeasible/
accctrl:=acccomf

v ≤ vgoal /
accctrl:= 0

v > vgoal + εv /
accctrl:= decelcomf

Figure 7: Keep Velocity Controller.

flow without leaving its lane even when the agent accelerates for time tacc with acceleration acc.
An agent can comfortably follow a movement circle if the centrifugal force is less than Fcomf. Hence
the faster an agent is, the wider its movement circles have to be. The mathematical equations are
given on p. 15.

In Fig. 7 the interface of the KVC is described. The set-point is a goal velocity, which is reached
by adjusting the acceleration of the vehicle via accctrl. This implies changes of the vehicle’s velocity,
its distance to other objects and its offset to the reference line. Although the set-point is just a
goal velocity, the controller monitors offset and orientation, since they are necessary to determine
whether accIsFeasible(v,acc,β,offset) equals true, i.e. the agent can accelerate without leaving its
lane (cf. Sect. 2.1.2). The interface documentation does not specify the value of vgoal. Depending
on the context, vgoal may be for instance vcruise, a velocity the agent likes as default travel speed or
it may be vmax, the maximal velocity. We will see in Sect. 4 that so called translation controllers,
triggered by the protocol layer, determine the values for the controllers’ set-points.

Approach Velocity Controller (AVC) The AVC is activated in case the agent has to take
care of a reference object. The AVC controls the acceleration, so that the agent reaches and keeps
the desired distance to a (possibly moving) reference object at the desired speed. The AVC is
deactivated if there is no longer a reference object to take care of.

The AVC thus implements a very powerful control law. Figure 8 lists some manoeuvres the AVC
is capable to perform:

(a) Approach a standing object.
A translation controller then sets vgoal to zero and distgoal to the desired distance between
the agent and standing object. The AVC chooses an acceleration so that the agent comes to
halt, i.e. reaches v = 0, in distance distgoal from the standing object.

(b) Follow a moving object while maintaining the safety distance.
vgoal is set to the velocity of the reference object and distgoal is the safety distance. Then AVC
adjusts the acceleration so that the agent reaches vgoal in the distance distgoal to this object.
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va b

d

a b

dgoal

(a) Approach a standing object.

va vgoalb

d

vgoala vgoalb

dgoal

(b) Follow a moving object while maintaining the safety distance.

va vgoalb

d

vgoala vgoalb

min(dmin, dsafe)

(c) Travel with vcruise but keep at least distance dmin to a moving object.

va vbb

vcc
dab

dac

vgoala b vgoal

vcc

(d) Stay behind two moving objects while respecting safety distances.

Figure 8: Sample scenarios (initial and goal) the AVC controls.
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When the set-point is reached and the reference object does not change its velocity, distgoal is
kept and AVC sets accctrl to zero; otherwise AVC adjusts the acceleration accordingly.

(c) Travel at most with vcruise but keep at least distance dmin to a moving object.
vgoal is set to the minimum of desired travel speed vcruise and the velocity of the reference object.
distgoal is set to the maximum of the safety distance and dmin. Hence AVC adjusts the acceleration
so that the agent does not fall below neither the safety distance nor dmin.

(d) Stay behind two moving objects while respecting safety distances.
Suppose the agent has a predecessor on its lane and wants to change onto a neighbouring lane
behind some car. The AVC can now be used to make the agent maintain the safety distances
to its predecessor and the intended new predecessor. vgoal is set to the minimum velocity of
both these reference cars and distgoal to a distance that implies that both safety distances are
respected.

The above list gives an impression of what the AVC is capable of. In order to bring the agent
behind the reference car with the desired distance, AVC controls the acceleration only. Based on
the current distance and velocity it determines whether it can find an acceleration—the so called
target acceleration—that makes the agent reach the goal velocity and goal distance to the reference
object. The basic design principles for the AVC can be summarized as:

• The AVC is built to keep an acceleration (may it be positive or negative) as long as possible.

• A comfortable acceleration is chosen if either the target acceleration is too large to be com-
fortable or if the target acceleration is too small to reach the set-point in reasonable time.

Whereas the first aspect makes a manoeuvre comfortable, the second aspect yields an optimiza-
tion on the overall manoeuvre time.

The controller automaton is given in Fig. 9. In each state a part of the invariant is given defining
a constraint on the controller’s output. The complete state invariant then is the conjunction with the
state invariant given in Table 1. Edge labels, that is pairs of a guard and a discrete update action,
are omitted here. The update action corresponds to the invariant inscribed into the respective target
state in Fig. 9. The guards correspond to the invariants of the target state as given in the Table 1.

In the following we explain the control laws of the Approach Velocity Controller based on the
system dynamics as illustrated in Fig. 10. For a rough orientation, we added the mode names of the
Approach Velocity Controller of Fig. 9 to Fig. 10, indicating when the respective mode is active.

ChooseDecel Consider the upper right quadrant of Fig. 10. In this situation the agent is
too fast (v > vgoal) and the distance to the reference object is too large (dist > distgoal). Below
the curve decelcomf there is one deceleration deceltarget to bring the agent as close as desired to the
reference object, and when the distance is reached also the goal velocity is reached (dist = distgoal

and v = vgoal). The agent chooses deceltarget as acceleration except in the following three cases:

1. If the time to reach distgoal and vgoal with deceltarget is greater than reasonable, the agent
accelerate comfortably to then decelerate more vehemently. treason specifies the maximum
time the agent is willing to keep its acceleration (or deceleration) in order to reach the goal
(velocity and distance). We thereby reduce the overall manoeuvre time.
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ApproachVelocityController

ChooseDecel

accctrl = deceltarget ∧ inv(ChooseDecel)

setpoint is directly reachable
comfortably and in reasonable time
using one deceleration

ComfDecel

accctrl = decelcomf ∧ inv(ComfDecel)

no (comfortable) target
deceleration exists or
decelerate to optimise maneuver time

ChooseAccel

accctrl = acctarget ∧ inv(ChooseAccel)

setpoint is directly reachable
comfortably and in reasonable time
using one acceleration

ComfAccel
accctrl = acccomf ∧ inv(ComfAccel)

no (comfortable) target
acceleration exists or
accelerate to optimise maneuver time

Keep

accctrl = 0 ∧ inv(Keep)

keep the setpoint

Wait

accctrl = 0 ∧ inv(Wait)

acceleration
or deceleration
is not possible

setpoint: v ∼εv vgoal, dist ∼εdist distgoal
actuator: accctrl; influences: v, dist;
sensor: dist, v, βori, offset
const: treason, εhard, εdist, εv, vmax, Fmax, acccomf, decelcomf

Figure 9: Approach Velocity Controller. tacc
target(t

dec
target) is an abbreviation of

vgoal−v

acctarget
(

vgoal−v

deceltarget
), the time

spend to accelerate/decelerate from v to vgoal with acceleration acctarget(deceltarget). For the invariants
cf. Table 1.
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Figure 10: Key idea for the AVC design I.
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state invariant

ComfDecel v > 0 ∧ (
(dist ≥ distgoal ∧ v > vgoal ∧ |deceltarget| ≥ |decelcomf|) (CoD1)
∨ (dist < distgoal ∧ v ≥ vgoal) (CoD2)
∨ (dist < distgoal ∧ v < vgoal ∧ acctarget < acccomf ∧ treason ≤ tacccomf) (CoD3)
∨ (dist < distgoal ∧ v < vgoal ∧ acctarget < acccomf ∧ treason < tacctarget)) (CoD4)

ComfAccel v < vmax ∧ accIsFeasible(v, acccomf, βori, offset)∧
((dist ≤ distgoal ∧ dist > disthard + εhard ∧ v < vgoal ∧ acctarget ≥ acccomf) (CoA1)
∨ (dist > distgoal ∧ v ≤ vgoal) (CoA2)
∨ (dist > distgoal ∧ v > vgoal ∧ |deceltarget| < |decelcomf| ∧ treason ≤ tdeccomf) (CoA3)
∨ (dist > distgoal ∧ v > vgoal ∧ |deceltarget| < |decelcomf| ∧ treason < tdectarget)) (CoA4)

ChooseDecel v > 0∧
dist > distgoal ∧ v > vgoal ∧ |deceltarget| < |decelcomf| ∧ (tdectarget ≤ treason) (ChD)

ChooseAccel dist > disthard + εhard ∧ v < vmax ∧ accIsFeasible(v, acctarget, βori, offset)
∧ dist < distgoal ∧ v < vgoal ∧ acctarget < acccomf ∧ tacctarget ≤ treason (ChA)

Keep distgoal − εdist ≤ dist ≤ distgoal + εdist ∧ vgoal − εv ≤ v ≤ vgoal + εv

Wait ((dist ≤ disthard + εhard ∨ v ≥ vmax ∨ ¬accIsFeasible(v, acctarget, βori, offset) )
∧ (CoA1 ∨ CoA2 ∨ CoA3 ∨ ChA)) ∨
((v ≤ 0) ∧ (CoD1 ∨ CoD2 ∨ CoD3 ∨ ChD))

Table 1: Invariants of the Approach Velocity Controller.

2. If deceltarget is too vehement to be comfortable, the agent chooses a lesser deceleration, that
is it decelerates with decelcomf .

3. The agent is already at a standstill and hence cannot further decelerate.

ComfDecel In the upper left quadrant of Fig. 10 the agent’s velocity is greater than the goal
velocity and the agent is too close to the car ahead. The agent decelerates comfortably. The agent
also uses comfortable deceleration, in case the target deceleration is greater than comfortable (upper
right quadrant, left of the grey area) or in case the agent is too close and too fast (upper left
quadrant) or in case the agent is slower than the target velocity and too far close, but acceleration
is not yet reasonable (lower left quadrant above the grey area).

ChooseAccel The mode ChooseAccel corresponds basically to the grey area in the lower left
quadrant of Fig. 10. That means, a target acceleration is exists, if the agent’s velocity is less than
the goal velocity and the distance is less than the goal distance. There are four cases in which
acctarget is not chosen (even if it exists):

1. If acceleration with acctarget would take unreasonable time, the agent decelerates comfortably
(i.e. as vehemently as comfortable) and then uses a greater acceleration.

2. If the acceleration is too large to be comfortable the agent chooses a less vehement acceleration
that is it accelerates with acccomf.
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3. The agent car already drives with maximum speed and is not allowed to further accelerate.

4. The agent is not directly following the traffic flow. In this case the agent is allowed to accel-
erate only if the agent is able to follow a movement circle that gets it heading in direction of
the traffic.

ComfAccel The agent uses comfortable acceleration, in case the target acceleration is greater
than the comfortable acceleration (lower left quadrant, right of the grey area) or in case the agent
is too far away and too slow (lower right quadrant) or in case the agent is faster than the target
velocity and too far away, but deceleration makes the vehicle reaching its set point after more than
reasonable time (upper right quadrant below the grey area).

Wait If the agent should accelerate, but is not able to, because it either cannot keep its lane
or is too close or too fast, it keeps its current velocity. Likewise if the agent should decelerate but
is not able to because it is at a standstill, it keeps its velocity.

Figure 11 exemplifies the controller’s behaviour by the blue (where acc = acccomf), green (where
acc = 0) and finally red trajectory (where acc = deceltarget). During the blue part of the trajectory,
the agent is slower than the car ahead and too far away, so it accelerates with maximal acceleration
acccomf to catch up with the reference object and gets even faster. During the green part of the
trajectory, the agent keeps the velocity when its maximum speed is reached and at the red part of
the trajectory the agent constantly uses the target deceleration. It starts to brake as soon as it is
close enough to reach the goal distance and velocity in reasonable time.
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Figure 11: Key idea for the AVC design II.
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Determining the Target Acceleration We stated above that there is (i) a target accelera-
tion acctarget that makes a vehicle reach the set-point’s velocity and distance, if the agent is slower
than its reference object and too close to it, and that there is (ii) a target deceleration deceltarget,
if the agent is faster than the reference object and too far away from it. In the following we will
derive a formula for determining acctarget. Consider the scenario as illustrated in Fig. 12.

va vgoalb

distinitial scenario
(v ≥ vgoal ∧ dist ≥ distgoal) ∨
(v ≤ vgoal ∧ dist ≤ distgoal)

va vgoalb

distgoal
goal scenario
v = vgoal ∧ dist = distgoal

Figure 12: Determining acctarget and deceltarget. The controlled car is a and car b is the reference
object.

Let us denote the initial positions of the agent and its reference object as pa and pb, respectively.
We denote their respective positions in the goal scenario as p′

a and p′

b
. For this scenario we use as

vgoal the velocity of the reference object and denote the agent’s velocity simply with v. We denote
the (goal) displacement as dist (distgoal). We assume that the car ahead drives with constant speed.
This gives rise to the following system of equations:

p′

a = pa + v · t +
1

2
acc · t2

p′

b = vgoal · t + pb

distgoal = p′

b − p′

a

vgoal = v + acc · t

(1)

Hence the vehicle a reaches the distance distgoal when taking the following acceleration/deceleration
acc:

acc =
(vgoal − v)2

2(distgoal − (pb − pa))

If we denote the initial distance of the two cars, pb −pa, with dist, we can express the above equation
as:

acc =
(vgoal − v)2

2(distgoal − dist)
, (2)

Equation 2 on page 15 describes the case that the reference object is slower than the agent and
distgoal is greater than dist, gives acctarget.

Formula Eq. 2 determines exactly the necessary acceleration acctarget (deceleration deceltarget)
assuming that the agent drives on a straight line and the reference object drives with constant
speed, that is the displacement equals the distance covered by the agent. Since the distance covered
by the agent is greater than the displacement, deceltarget may thus be too large and acctarget may
thus be too small, if the agent is currently on a movement circle. Thus using this target decelera-
tion/acceleration will not be safety critical. Since the target acceleration/deceleration is only used
when it brings the agent to the set-point within reasonable time, there is an upper bound on the
difference between displacement and distance.
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Switching Between Approach Velocity Controller and Keep Velocity Controller Up to
now, we have introduced the two controllers, AVC and KVC, that together make up the velocity
control. Figure 6 illustrates that control is switched between these two controllers; they are com-
posed sequentially. As the AVC is used to ensure safety distances between cars, the activation of
AVC is safety critical and a belated activation may lead to a violation of safety distances. Roughly
put, control passes from the AVC to the KVC when the agent has no way to follow its reference
object and the distance exceeds the goal distance, and control passes from the KVC to the AVC if
the distance is less than the goal distance or if the agent has to decelerate soon.

Table 2 gives the guards for switching between the KVC and the AVC. Control passes from
the AVC to the KVC when the agent’s velocity is lower than the goal velocity and the current
velocity is bigger than the goal velocity, so that the agent would have to accelerate with maximal
(not comfortable!) acceleration to merely reach the goal velocity. The AVC gets activated when
the distance between the agent and its reference car is too small but also when the distance is too
big but the agent would need to decelerate more than comfortable to reach the goal or the target
deceleration is to small to reach the goal within reasonable time but it would reach the goal in
thrice the reasonable time.

state invariant

AVC → KVC dist > distgoal + εdist ∧ v + accmax · 3 · treason < vgoal − εv

KVC → AVC (dist ≤ distgoal + εdist) ∨ (dist > distgoal − εdist ∧ v > vgoal − εv ∧
(|deceltarget| ≥ |decelcomf| (CoD1’)
∨ tdeccomf ≤ tdectarget ≤ 3 · treason) (CoA3’)

Table 2: Guards for switching between AVC and KVC

Steering Influences Velocity When the agent is able to reach the set-point by a constant accel-
eration acctarget (ChooseAccel or ChooseDecel), the chosen acceleration brings the agent in distance
distgoal to the car ahead with speed vgoal. If the agent’s movement circle changes and the agent is on
a narrower curve, the agent may not continue using acctarget, because it is not feasible (accIsFeasible
becomes false) any more. Likewise it may still be possible for the agent to use a constant accel-
eration to reach its set-point. Therefore the automaton (cf. Fig. 9) contains self loops on states
ChooseAccel and ChooseDecel. They are triggered by a change on the movement circle.

2.1.2 Steering Controller

The Steering Controller (SC) is responsible for bringing and keeping the vehicle on a reference line.
Usually the reference line is the centreline of the agent’s lane, but for instance during a lane change,
the reference line becomes the mid of the target lane so that the SC makes the agent change lane.

Figure 14 gives the Steering Controller and describes its interface. The Steering Controller has a
two dimensional set-point of offset offset and orientation βori. Its goal is to bring the car in βori ∼εβ

0
and offset ∼εoff

0, which means the car has to follow the traffic flow and be on the reference line, for
both a slight deviation is tolerated. The two dimensions of the Steering Controller are illustrated
in Fig. 13.
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reference line offset>0

offset<0

βori < 0

βori > 0

offset βori

offset βori

Figure 13: Set-point dimensions of the Steering Controller. The orientation equals zero if the car is
parallel to the road. Its offset equals zero when it is on the reference line.

Recall that the agent is either on a straight line or follows some movement circle. A movement
circle is given by a radius and a direction. A vehicle is on a movement circle if its centreline is
tangent of the movement circle (cf. Fig. 15). The transitions between different movement circles
and lines are smooth. If the reference line can be reached by following a certain circle, the circle can
be chosen as so called target movement circle. In general, there may be several such circles, if the
car is facing towards the reference line, or none, in case the car is facing away from the reference line.

The basic design principles of the SC are similar to those of AVC:

• The SC is built to keep a movement as long as possible.

• A comfortable movement circle is chosen if either the target movement circle is to narrow—
centrifugal forces become uncomfortably strong—or if the target movement circle is yet too
wide to get the agent on the reference line in reasonable time.

In the states ChooseRight and ChooseLeft the agent drives at a speed such that the refer-
ence line is reached by following a target movement circle comfortably and in reasonable time. A
movement is reasonable (isReasnble(β, mc, v) evaluates to true), if it takes at most time treason for
the agent to reach the reference line while driving with the current speed v. A movement circle
is comfortable at speed v (isComf(mc, v) evaluates to true), if the agent experiences a centrifugal
force less than Fmax when following the movement circle mc with speed v. There may be several
movement circles that the agent could follow satisfying these constraints. We choose the widest
such movement circle.

The states ComfLeft and ComfRight represent situations where the agent cannot directly follow
a movement circle to reach the mid of lane because either

1. the agent is facing away from the reference line (CoL2,CoR2), or

2. the agent is too close to the reference line to reach it on a comfortable movement circle
(CoR1,CoL1), or

3. the agent is too far away (the offset is too large) to reach the reference line in a reasonable
time (CoL3,CoR3).

In the first two cases the agent takes the narrowest possible movement circle, mccomf, that is still
comfortable. In the last case the agent steers with the narrowest possible movement circle towards
the reference line to reduce its offset, to then use the target movement circle—which is in the
opposite direction—to get onto the reference line.
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The loops on states ChooseRight, ChooseLeft, ComfRight and respectively ComfLeft are taken
whenever the velocity changes, so that isReasnble and isComf are evaluated with the up to date
speed. Again part of the invariants of the automaton in Fig. 14 are given in an extra table, that is
Table 3 and edge labels can be derived accordingly.

SteeringController

ChooseRight

mcctrl = mcrighttarget ∧ inv(ChooseRight)

setpoint is directly reachable
comfortably and in reasonable time
using one steering angle

ComfRight

mcctrl = mcrightcomf ∧ inv(ComfRight)

no (comfortable) target
movement circle exists or steer to
the right to optimise maneuver time

ChooseLeft

mcctrl = mclefttarget ∧ inv(ChooseLeft)

setpoint is directly reachable
comfortably and in reasonable time
using one steering angle

ComfLeft
mcctrl = mcleftcomf ∧ inv(ComfLeft)

no (comfortable) target
movement circle exists or steer to
the left to optimise maneuver time

Keep

mcctrl = mlstraight ∧ inv(Keep)

keep the setpoint

Wait

mcctrl = mlstraight ∧ inv(Wait)

acceleration
or deceleration
is not possible

setpoint: offset ∼εoff 0, βori ∼εβ 0
actuator: mcctrl; influences: βori, offset, mc
sensor: βori, v
const: treason, εoff, εβ, βmax, Fmax

Figure 14: Steering Controller. mctarget is a movement circle that makes the vehicle reach the ref-
erence line tangentially. A movement circle is defined as a pair (radius, side). For the invariants
cf. Table 3.

Determining the Movement Circle mcctrl The SC sets the movement circle of its vehicle to
±mccomf or to mctarget. In the following we describe how these movement circles are determined. We
first show how to determine the least radius the agent can comfortably follow. The faster an agent
is, the wider such a circle has to be, since otherwise uncomfortable centrifugal forces are experienced.
We assume a global coordinate system to some roadside origin with a horizontal x-axis. Lanes are
parallel to the x-axis and cars are heading in direction of increasing x.
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state invariant

ComfRight −βori < βmax − εβ ∧

((offset ≤ 0 ∧ βori > 0 ∧ ¬isComf(mcrighttarget, v)) (CoR1a)

∨ ((offset ≤ 0 ∧ βori > 0 ∧ isComf(mcrighttarget, v) ∧ ¬isReasnble(βori,mcrighttarget, v)) (CoR1b)
∨ (offset < 0 ∧ βori ≥ 0) (CoR2)
∨ (offset > 0 ∧ βori < 0 ∧ ¬isReasnble(βori,mclefttarget, v))) (CoR3)

ComfLeft βori < βmax − εβ ∧
((offset ≥ 0 ∧ βori < 0 ∧ ¬isComf(mclefttarget, v)) (CoL1a)
∨ ((offset ≥ 0 ∧ βori < 0 ∧ isComf(mclefttarget, v) ∧ ¬isReasnble(βori,mclefttarget, v)) (CoL1b)
∨ (offset < 0 ∧ βori ≤ 0) (CoL2)

∨ (offset < 0 ∧ βori > 0 ∧ ¬isReasnble(βori,mcrighttarget, v))) (CoL3)

ChooseRight offset < 0 ∧ βori > 0 ∧ isComf(mcrighttarget, v) ∧ isReasnble(βori,mcrighttarget, v) (ChR)
∧ − βori < βmax − εβ

ChooseLeft offset > 0 ∧ βori < 0 ∧ isComf(mclefttarget, v) ∧ isReasnble(βori,mclefttarget, v) (ChL)
∧βori < βmax − εβ

Keep −εoff ≤ offset ≤ εoff ∧ −εβ ≤ βori ≤ εβ

Wait (−βori ≥ βmax − εβ ∧ (CoR1a ∨ CoR1b ∨ CoR2 ∨ CoR3 ∨ ChR )) ∨
( βori ≥ βmax − εβ ∧ (CoL1a ∨ CoL1b ∨ CoL2 ∨ CoL3 ∨ ChL))

Table 3: Invariants of the Steering Controller.

Determining a Comfortable Movement Circle The SC chooses in states ComfLeft as move-
ment circle mccomf and in state ComfRight -mccomf. Intuitively, a movement circle is comfortable
if the centrifugal force a driver experiences following the movement circle with the current speed
is comfortable. Given the maximal centrifugal force Fcomf that a passenger with assumed weight
masspassenger experiences as comfortable, then

rcomf =
masspassenger · v2

Fcomf

. (3)

is the least radius of a circle that the agent can drive comfortably. So we say that isComf(mc, v) =
true iff mc.r¿rcomf.

Determining a Reasonable Time Movement Circle In the following we will determine a
movement circle so that the agent reaches the reference line in time treason. We assume that the agent
currently has an orientation of βori and that it has (and keeps) a velocity of v.

In time treason the car drives
sreason = v · treason. (4)

The distance sreason is regarded to be the distance the car covers to reach the reference line tangen-
tially following the reasonable time movement circle. So a sector is spanned by the reference line
and the agent’s perpendicular as illustrated in Fig. 15.
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Figure 15: Reaching the reference line in time treason.

As denoted in Fig. 15 the central angle of the sector equals the car’s orientation, βori. Hence we
can derive that

rreason =
sreason · 180◦

π · βori

. (5)

by using the well known formula for the arc length of a sector. We say that isReasnble(βori, mc, v) =
true iff mc.r≤ rreason.

Choosing a Target Movement Circle In modes ChooseRight and ChooseLeft the agent is
allowed to choose any radius that is comfortable and timely reasonable, isReasnble(βori, mc, v) ∧
isComf(mc, v). The agent’s centreline and the reference line are both tangents of the movement
circle. The former implies that the circle centre is on its perpendicular (cf. first line of Eq. 6).
The latter implies that the circle centre’s y-position is rtarget above or below the y-position of the
reference line (cf. second line of Eq. 6).

ycirc = −
xcirc

tan βori

+ ycentre +
xcentre

tan βori

ycirc = reference lane ± rtarget

rtarget =
√

(xcentre − xcirc)2 + (ycentre − ycirc)
2

rtarget ≤ rreason

rtarget ≥ rcomf

(6)

Hence we have to find a movement circle satisfying the above equations. In mode ChooseLeft the
second line of Eq. 6 has to be ycirc = reference lane−rtarget whereas in mode ChooseRight it has to
be ycirc = reference lane+rtarget.

Note, that a target movement circle is only chosen if the car is not parallel to the lane (0◦ 6=
βori 6= 180◦) and that a car has a maximal orientation βmax which we assume to be less than 90◦.
So that the above system of equations is well defined.
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Determining Whether a Movement Circle is Feasible The SC influences the VC by chang-
ing the agent’s orientation. When the the agent’s orientation is not equals zero (i.e. the agent is
not following the traffic flow) but wants to accelerate, it has to check whether it can still keep its
lane. The VC therefore evaluates whether accIsFeasible(v,acc,β,offset) equals true. Intuitively, we
say that accIsFeasible(v,acc,β,offset) equals true, if the agent can accelerate for a given constant
time taccelerate reaching a velocity v2 and with this velocity it can still find a comfortable movement
circle that keeps it on its lane. Thus accIsFeasible(v,acc,β,offset) equals true, if the following system
of equations has a solution.

ycirc = −
xcirc

tan βori

+ ycentre +
xcentre

tan βori

ycirc = horizontal line ± rtarget

rtarget =
√

(xcentre − xcirc)2 + (ycentre − ycirc)
2

rtarget <
masspassenger · (v + taccelerate · acc)2

Fcomf

horizontal line ≥ lane · lanewidth + marginsafety

horizontal line < (lane + 1) · lanewidth − marginsafety

(7)

Here marginsafety over-approximates the difference between the vertical position of the agent’s centre
and its outer front/rear. Line 1-3 express that there is a movement circle for the agent that brings
it onto a horizontal line. According to line 4 this circle can be driven comfortably using the speed
reached after accelerating for time taccelerate (cf. 2.1.2). The reached horizontal line is within the
current lane outside the safety margin according to lines 5-6.

2.2 Summary

In this section we presented the controllers of the AUT layer. These controllers together specify
the autonomous behaviour of an agent and thereby provide a set of reactive skills. The control of
a vehicle is determined by two loosely coupled controllers, one for steering and one for velocity
control. Both controllers implement a policy to reduce the manoeuvre time and changes in its
control outputs, i.e. changes in the vehicle’s movement and acceleration/deceleration, respectively.
Further the steering and velocity controllers respect comfort constraints: There is a fixed maximum
for comfortable acceleration/deceleration and the centrifugal force a vehicle experiences is at most
equals a fixed maximum that is still experienced as comfortable.

In the next section we will see how the reactive skills provided by AUT are used by the PROT

layer to build up a lane change manoeuvre.
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3 Protocol Layer

While AUT implements simple autonomously controlled reactive skills based on sensor readings,
PROT uses these skills to build manoeuvres where agents are coordinated by communication. In
other words PROT specifies protocols by which the agents can perform cooperative manoeuvres.
Agents coordinate by passing messages and the protocols specify how this is done to realise a
complex manoeuvre The current model uses synchronous message passing in the protocols. We
assume that all received messages belong to the current manoeuvre run and all messages are to be
trusted. We further assume that no messages are lost.

In the following, we will show how PROT builds a lane change manoeuvre from the skills provided
by the AUT layer as described in the previous section.

3.1 An Overview of the Lane Change Manoeuvre Protocol

We start by informally describing how the lane change manoeuvre proceeds.
The manoeuvre starts when a car wants to change onto a neighbouring lane. It then assesses the

traffic situation on the target lane. If the target lane is not occupied, it performs a lane change on its
own. But if the lane is occupied the initiator dynamically determines feasible helpers and negotiates
with them to find its actual helper. Only when a helper has agreed, the initiator performs its lane
change.

So the protocol considers the following roles: An agent acts as an initiator if it intends to change
to one of its neighbouring lanes. It then asks certain other agents on the target lane for help, the
feasible helpers. The one feasible helper that agrees to help, takes on the role of a helper and is then
contracted to a certain behaviour.

Fig. 16 illustrates the two different traffic situations at which a lane change can be performed:
either the target lane is free or the target lane is occupied.

Free Target Lane Certainly the lane change is much simpler if the target lane is not occupied.
The agent car has simply to check via its sensors whether the lane is free and it has to make sure
that no other car intends to change lane and may thereby drive into its way. Then the agent may
steer onto its target lane performing the actual lane change.

Occupied Target Lane When the target lane is occupied, the lane change manoeuvre is
more complex. The initiator first makes an estimation about which cars on its target lane are
feasible helpers. It then asks these agents to be its helper. When an agent agrees to be a helper,
it is obliged to keep the safety distance to the initiator for the amount of time agreed upon. The
initiator will change lane by positioning itself in front of its helper. If there is a car ahead of the
helper, the initiator adjusts its velocity to establish the safety distance to this car, which will be its
new car ahead. The initiator changes lane when it has established the safety distance to its new car
ahead—if it exists—and the helper established the safety distance to the initiator.

Fig. 17 sketches the case of the lane change manoeuvre where a helper and the helper’s ahead
are present.

An agent is always obliged to keep the safety distance to its ahead. Thus, the safety distances
between cars on one lane are always respected. A helper additionally establishes a safety distance
to the initiator as if it was on the helper’s lane and likewise the initiator establishes a safety distance
to the helper’s car ahead (if present). It is easy to see that the Approach Velocity Controller can
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Figure 16: Typical traffic situations the protocol has to handle.

be employed to ensure the safety distances (cf. Sect. 2.1.1 on p. 8). In the following we introduce
the lane change protocol more formally. We will see that the protocol invokes services of AUT. The
implementation of the service invocation and also the details of estimations which agents are feasible
are given later in Sect. 4 and Sect. 3.4, respectively.

Automata After having informally described how a lane change manoeuvre proceeds accord-
ing to our lane change protocol, we now introduce a formal specification of the protocol via timed,
synchronously communicating automata. The automatons’ edges are labelled with a pair [guard/ac-
tion] where the guard specifies a condition that has to be satisfied to transit from the source to
the target state. When a transition is executed its action is performed. We use events of receiving
a message also as guards in the sense of the receiving event occurs. Borrowed from the world of
hybrid automata, we use real valued variables to model clocks: States may specify a derivative
d, d∈ {1, −1} which describes whether the clock increases or—like a stop watch—decreases with
time. Clock variables can be discretely updated by an transition’s action and continuously evolve
according to the flow of the current state.

We have already seen that an agent can take on different roles. The protocol specification reflects
this by defining an automaton for the initiator and an automaton for (feasible) helpers.

3.2 Initiator Role

In Fig. 18 the timed automaton for the initiator protocol is given. The derivatives are inscribed into
its states and states are descriptively labelled. The edge labels are given in Table 4.

As an overview, we give an informal walk-through of the automaton.
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Figure 17: Overview of the Lane Change Manoeuvre.24
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Figure 18: Initiator Protocol. Red (dashed) arcs lead to failure of the lane change manoeuvre. The
lane change can succeed without helper (marked dotted in green) or with helper (thick in blue).

start→ look Request a set of best feasible helpers.
The initiator starts by assessing the traffic situation on its target lane. The autonomous layer
is asked to use its sensors and estimate which of the cars on the target lane are feasible helpers,
taking into account the agents which have already declined. The autonomous layer can either
answer (1) there are no agents on the target lane (helpers = {⊥}) or (2) there are no feasible
helpers (helpers = ∅) or (3) these are the feasible helpers (∅ 6= helpers 6= {⊥}).

look→ decide AUT provides feasible helpers.
The autonomous layer did assess whether there are feasible helpers on the target lane and
informs the initiator’s protocol layer.

decide→ change If there are no agents, change lane.
The initiator decides to undertake a lane change on its own, if the autonomous layer reports
that there are no other agents on the target lane.

decide→ req If there is a feasible helper, choose a helper h.
The initiator asks a feasible helper to be its helper.

decide→ failed If there are no feasible helpers, abort the lane change manoeuvre.
In case the target lane is occupied and all feasible helpers declined to be helpers, the lane
change manoeuvre is aborted.

req→ start If a help request was declined, assess anew.
A feasible helper, when asked to be a helper, may not agree. In this case the initiator assesses
the situation on the target lane anew.
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edge guard action

init→ start true / declined
′ := ∅, x′ := timeout lc

start→ look true / aut!(findHelpers, lane, declined)
look→ decide aut?(helpers) /
decide→ req ∅ 6= helpers 6= {⊥} / h′ :∈ helpers , h′!(lcReq), y′ := 0
decide→ failed helpers = ∅ /
decide→ change helpers = {⊥} / prot!(doLC, lane, x)
req→ feasible h?(yes, timeouthelp) / timeout ′ := min{x, timeouthelp − y},

aut!(feasible, h, timeout)
req→ start h?(no)∨ y ≥ timeoutcom / h!(abort), declined ′ := declined ∪ {h}
req→ failed x ≥ 0 / h!(abort)
feasible→ changeH aut?(yes) / h!(yes), prot!(doLC, h, timeout)
feasible→ failed prot?(no) / h!(no)
changeH→ failed prot?(abort) / h!(abort)
changeH→ success prot?(done) / h!(done)
change→ failed prot?(abort) /
change→ success prot?(done) /
success→ final true /
failed→ final true /

Table 4: Edge Labels for the Initiator Automaton of Fig. 18.

req→ feasible If a helper agreed, check if the offered time-out is feasible.
The helper agrees by letting the initiator know about the duration it is willing to help. The
autonomous layer of the initiator evaluates whether the offered time frame is feasible.

feasible→ changeH If the time frame is feasible, start the lane change.
In case the time frame offered by the helper is feasible, the lane change is started.

changeH→ failed, change→ failed Lane change did not succeed.
From the time on, that the initiator decides to actually try to perform a lane change, the
protocol specifies a couple of safety measurements for a safe lane change. If one of them fails
or the time for lane change runs out, the manoeuvre is aborted. The safety measures are
specified by the automaton in Fig. 19.

req→ failed Time is out.
The initiator is given a maximal manoeuvre time. When the attempt of finding a feasible
helper takes longer, the manoeuvre is aborted.

The walk-through of the automaton of Fig. 18 left open how the lane change is actually realized.
Table 4 states that the protocol layer sends the message prot!(doLC, lane, x) when a lane change
is attempted without helper and prot!(doLC, h, time-out) for a lane change with helper h, meaning
that a message is send to the protocol layer where it is told to do a lane change within the time
frame time-out. If the lane change is attempted without helper the target lane is specified as lane
otherwise the helper is given and the initiator has to change onto the helper’s lane. Both of these
two messages trigger the automaton of Fig. 19. This automaton specifies the further proceeding
(and the safety measures to be taken) for both scenarios. Although the automaton of Fig. 19 could
as well be directly integrated into that of Fig. 18, we specified it separately to avoid duplication of
this protocol procedure and to underline that it is the same for both scenarios.
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state d
dt

ready d
dt

tfinished = 0, d
dt

tsignal = 0
await gap d

dt
tfinished = 1, d

dt
tsignal = 0

look out d
dt

tfinished = 1, d
dt

tsignal = 1
signal d

dt
tfinished = 1, d

dt
tsignal = 1

lane change d
dt

tfinished = 1, d
dt

tsignal = 0

Table 5: Derivatives in the Automaton in Fig. 19.

Again the states of the automaton are descriptively labelled. The state derivatives are given in
Table 5 and the edge labels are given in Table 6.ready await gaplook outsignalre
overlane 
hange
Figure 19: Protocol for Changing Lane. The lane change succeeds along black arcs. Red, dashed
arcs signal some failure.

ready→ await gap Ready to attempt a lane change.
The control is switched from the automaton of Fig. 18 to that of Fig. 19 by sending the
message prot!(doLC) and the automaton of Fig. 18 will only proceed when told to do so by the
automaton of Fig. 19. The message prot!(doLC) means that now a lane change is attempted.
We next give a quick walk-through of the signalling automaton of Fig. 19.

await gap→ look out When there is a sufficient gap, check for signalling competitors.
When the sensors report that a sufficiently large gap on the target lane has been established,
the initiator checks whether it risks to collide with other cars simultaneously attempting to
change lanes, i.e. it checks whether there is another car signalling its intend to change lane
into the initiator’s target gap.

look out→ signal If no competitors signalled, set signals.
After checking whether other cars want to change lane, the initiator sets its own signals to
inform other agents of its intended lane change.

signal→ lane change Change onto target lane.
After having set the signals for a long enough time for other agents to react, the autonomous
layer is now told to perform the change of lanes.
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edge guard action

ready→ await gap prot?(doLC,lane, timeout) / t ′finished = 0, aut!(ensureGap,lane)

ready→ await gap prot?(doLC,helper, timeout) / t ′finished = 0, aut!(ensureGap,helper)

await gap→ look out sens?gapOK ∧ tfinished < 0 / t ′signal = 0, sens!watchSignals

look out→ signal tsignal ≥ durationwatch ∧ tfinished < timeout / aut!setSignals(lane), t ′signal = 0

signal→ lane change tfinished < timeout ∧ tsignal ≥ durationsignal / aut!(changeLane, lane)
lane change→ ready aut?laneChanged/ aut!dismissGap, sens!ignoreSignals,

prot!success
lane change→ recover sens?alert / aut!recover
recover→ ready aut?recovered / aut!dismissGap, aut!signalOff, prot!failed
await gap→ ready tfinished ≥ timeout / aut!dismissGap, prot!failed
look out→ ready tfinished ≥ timeout ∨ sens?signalAlert / aut!dismissGap, sens!ignoreSignals,

prot!failed
signal→ ready tfinished ≥ timeout ∨ sens?alert / aut!dismissGap,

act!signalOff,sens!ignoreSignals,
prot!failed

Table 6: Edge Labels for the Lane Change Automaton of Fig. 19.

lane change→ ready Lane change is done.
When the autonomous layer reports that the lane change succeeded, concurrently running
sensor and autonomous services are signalled to terminate and the control is switched back
to the automaton in Fig. 18.

lane change→ recover Driving onto the target lane failed.
The sensors report that safety distances are violated, so that the lane change is aborted and
recovery measures are triggered.

recover→ ready AUT gets ready for a new attempt.
When the autonomous layer reports a successful recovery, other services of the autonomous
layer still running are told to terminate, then the control is switched back to the automaton
of Fig. 18 by sending the message prot!failed.

await gap→ ready, look out→ ready, signal→ ready Time is out.
In case the maximal manoeuvre time is exceeded, the manoeuvre is ended.

Timing The protocol imposes several timing constraints on the initiator’s behaviour during
a lane change manoeuvre. In the sequel these constraints are discussed:

• time-outlc

For a lane change manoeuvre a maximum time duration, time-outlc, is given. The protocol
monitors that the lane change manoeuvre does not exceed this time limit. Therefore the clock
x is started in state start and takes the remaining manoeuvre time.

• time-outcom

time-outcom specifies the maximum time the negotiation with a feasible helper may take.
When this time exceeds, the transition from req→ start is taken.

• durationwatch

The initiator has to watch whether other cars signal their intend to change lane for at least
durationwatch.
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• durationsignal

Right before the initiator steers onto the target lane, it has to set signals for at least durationsignal.

3.3 Helper Role

So far we have seen the protocol specification for the initiator of a lane change and know that the
initiator asks other agents, that he thinks are feasible helpers, for help. An agent, when asked for
help, offers a time frame during which it is willing (or able) to help. When the initiator thinks that a
lane change within this time frame is feasible, the agent is accepted as a helper and thus contracted
to keep the safety distance to the initiator. The timed automaton in Fig. 20 specifies the protocol
for an agent in the role of a feasible helper. The derivatives are inscribed in the states and the edge
labels are given in Table 7. feasible ẋ = 1

offer
ẋ = 1

ensureSE
de
line su

essC

Figure 20: Helper Protocol. Marked dashed in red is the behaviour when the feasible helper does
not become a helper.

edge guard action

init→ feasible true / aut!(hFeasible, ag)
feasible→ offer aut?(timeouthelp) / ag!(yes, timeouthelp),

x′ := 0
feasible→ decline aut?(no) / ag!(no)
offer→ ensureSE ag?(yes) / aut!((respect,ag))
offer→ success ag?(no) ∨ x ≥ timeouthelp /
ensureSE→ success ag?(done) ∨ ag?(abort) ∨ x ≥ timeouthelp / aut!((forget,ag))
decline→ success ag?(abort) /
success→ final true / result!(success)

Table 7: Edge Labels for the Helper Protocol Automaton in Fig. 20.

Again we give an informal walk-through of the automaton.

init→ feasible Assessing feasible time frame for helping.
As first step a potential helper tells its autonomous layer to assess in which time frame it is
feasible for him to help.
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feasible→ decline Helping is not possible.
The autonomous layer reports that it is not feasible to help the initiator, so the helper rejects
the initiator’s request.

feasible→ offer Offer feasible time frame for helping.
The autonomous layer determines a time frame for which helping the initiator is feasible. This
time frame is communicated to the initiator.

offer→ success Initiator rejects offered time frame.
The transition offer→ success is taken in two scenarios: (i) The initiator may assess itself
that a time frame offered by the potential helper is not feasible for it and rejects the offer.
(ii) The time for helping runs out. In both cases, the cooperation between the two agents is
aborted.

offer→ ensureSE Initiator accepts offered time frame.
The time frame offered by the helper is accepted. Now the helper is obliged to respect the
safety distance to the initiator.

ensureSE→ success Helper stops helping.
The helper stops respecting the safety distance, when the initiator dismisses the helper or the
time is up.

decline→ success Initiator dismisses unsuitable helper.
The helper told the initiator that helping is not feasible for him. The initiator then dismisses
the helper.

Timing The protocol imposes just one timing constraint on the helper, time-outhelp. When this
time is up, the contract between helper and initiator is automatically terminated.

3.4 Predictions by Helper and Initiator

During evolution of AHS, situations arise where vehicles have to choose other vehicles as cooperation
partners. In our model of the lane change manoeuvre a car has to make predictions on the future
evolution of the traffic situation around it in order to predict

• as an initiator

– which cars on the target lane are feasible helpers
The protocol triggers such a service of the autonomous layer by sending message aut!(findHelpers, lane)
(cf. Table 4).

– which feasible helper is asked first.

– whether a lane change is feasible within the time frame offered by a helper
The protocol sends its autonomous layer aut!(feasible, h, time-out) (cf. Table 4).

• as a helper whether helping is feasible (cf. aut!(hFeasible, ag) in Table 7) and which time is
to be offered.
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Feasibility Predictions of an Initiator We call a carA a feasible helper of an initiator carB, if
we can predict a successful lane change for carB assuming that carA cooperates with carB and the
uncontrollable system part shows nominal behaviour. A lane change is performed successfully if it
is performed in a safe and comfortable manner respecting timing constraints, i.e. the lane change
manoeuvre satisfies the following three constraints:

1. Safety: The controllable system part stays safe (safety envelopes are respected).

2. Timing: The manoeuvre is completed within a certain time window.

3. Comfort: The cars’ controls stay within comfort ranges for accelerations and velocities.

These constraints impose a relation between comfortability of a manoeuvre and the time to complete
it.

Description of Solution Space Whether a manoeuvre is feasible, can be described by a system
of constraints that restricts the possible future system evolution to those that result in situations
where a lane change may be possible. Note, that it is not necessary to guarantee that the constraints
imply that a lane change is actually possible, since the AUT layer ensures that safety distances are
always respected irrespective of feasibility predictions. In case a manoeuvre is considered dangerous,
the AUT layer informs the PROT layer, which in turn triggers recovery measures of the AUT layer
(cf. Fig. 19 on p. 27).

Let carA be a candidate feasible helper of the initiator carB. Assume, we have access to an
oracle Ω which provides information on the behaviour of cars in the surrounding of carB. Given an

(uncontrollable) car carC, we denote by car
Ω(t)
C its state (acceleration, velocity, displacement) after

t time units. Analogously, for the controllable agents of the manoeuvre, we introduce car
Λ(t)
∗ , the

state of car∗ after t time units where ∗ ∈ {A, B}. With SD(car∗, car#) we denote the formula for the
safety distance between car∗ following car# as given in Sect. A.1 and dist(car∗, car#) describes the
distance between car∗ and car# in terms of their expected dynamics starting from a initial position.
By ahead(car∗) we denote the car ahead of car∗—w.l.o.g. we assume there is always a car ahead.
We assume that the cars all stay in their lanes.

The following system of inequalities expresses that after tgap time units there is a sufficiently
large gap in front of carA until tdone and carB is aside the gap (cf. lines 1 and 2 of Eq. 8), while
safety distances are respected for the whole time (cf. lines 3 and 4 of Eq. 8).

∀tgap ≤ t ≤ tdone : SD(car
Λ(t)
A , car

Λ(t)
B ) ≤ dist(car

Λ(t)
A , car

Λ(t)
B )

∧ ∀tgap ≤ t ≤ tdone : SD(car
Λ(t)
B , ahead(carA)Ω(t)) ≤ dist(car

Λ(t)
B , ahead(carA)Ω(t))

∧ ∀0 ≤ t ≤ tdone : SD(car
Λ(t)
A , ahead(carA)Ω(t)) ≤ dist(car

Λ(t)
A , ahead(carA)Ω(t))

∧ ∀0 ≤ t ≤ tdone : SD(car
Λ(t)
B , ahead(carB)Ω(t)) ≤ dist(car

Λ(t)
B , ahead(carB)Ω(t))

(8)

We instantiate Eq. 8 by fixing values for tdone and tgap and by restricting the accelerations to be
in certain intervals. We use an oracle Ω that predicts uninvolved agents to simply keep their initial
acceleration and further assume that a controlled agent chooses an arbitrary but fixed acceleration.
We consider a minimal tgap and use as tdone a value satisfying

tdone = tgap + “duration to change lane at given velocity”.

The acceleration interval is handled by examining the lower and upper bounds for acceleration.
With these instantiations, the system of inequalities can be directly solved.
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Figure 21: The constraints of Eq. 8 imply that a sufficiently large gap exists in front of helper a for
time tgap to tdone.

initiator

Figure 22: Frontal bound for feasible helper candidates. With comfortable acceleration the initiator
can only reach certain gaps ahead of it on the target lane. The bound is determined based on the
speed difference of the initiator and the estimated speed on the target lane.

Determining Feasible Helpers The initiator protocol specifies that in each iteration of the
protocol some candidate is chosen from the set of feasible helpers which is then asked to take on
the helper role.

The equation Eq. 8 can now be used to determine feasible helpers. Feasible helpers have to satisfy
the constraint system. To identify feasible helpers, for each car on the target lane in proximity of
the initiator, the set of vehicles is determined for which Eq. 8 has a non-empty solution space. Every
vehicle of this set is considered a feasible helper. We assume a uniform evolution of a benign system
where the absolute accelerations of uninvolved cars are relatively small. As an estimate of the
velocity of the traffic flow on the target lane, we build the average velocity of several cars nearby.
We refrain from considering exact values for each car individually, as acquiring this knowledge either
implies additional communications between agents or elaborate adoption of sensors.

The constraints on timing and comfort allow to derive an upper bound on how far ahead of the
initiator a feasible helper can be, such that no agent further ahead is a feasible helper (cf. Fig. 22).

We do not infer such a bound to restrict the area behind the initiator, since every car behind the
initiator could be a feasible helper if the gap in front of it expands up to the initiator. However, if a
car some certain distance behind the initiator declines to be a helper, no car further behind is asked
to be a helper, as the declining car is uninvolved and limits the gaps and the movement capabilities
of the following cars. At a certain distance the gap would not be reachable while satisfying the
timing constraints.

Further, coming from the idea “if there is enough time, go comfortably” we propose to weight
comfort against minimal completion time in order to choose the best feasible helper to be asked.
Therefore we utilize a function urgency(i, m) : N>0 × N>0 → [0, 1] ⊂ R which maps each iteration
of the protocol (up to a threshold iteration m—the expected number of iterations) to a real value
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between 0 and 1. Here, urgency(i, m) = 0 means the “comfortable” values for acceleration and
braking are used and urgency(i, m) = 1 stands for the “urgent” values of acceleration and braking.
A naive instance of the urgency function is

urgency(i, m) :=

{

1, if i ≥ m

(i − 1)/m, else
,

which increases urgency in equidistant steps from 0, for iteration 1, to 1, for iterations m and above.
For example, to predict the future state(s) of carB we use as an upper bound on the acceleration
accB in Eq. 8 where accB is

accB := acclow + urgency(i, m) · (acchigh − acclow),

with adequate values for acclow and acchigh, e.g. 1
2 · acccomfort and acccomfort. Using the above naive

urgency function the difference between acccomfort and accmax is divided in m equidistant steps. For
the first iteration of the protocol, acccomfort is chosen and from the m-th on, accmax is chosen.

So we consider vehicles as feasible helper if they can generate a sufficiently large gap using acci

and deceli, the acceleration accepted in the protocol iteration i.

Feasibility Predictions of a Helper During a run of the protocol, a feasible helper may be
requested by an initiator to take on the helper role for a certain amount of time. In contrast to the
partner-advice for initiator, upon reception of an aut!(hFeasible, ag) message, the feasible helper
has to solve the system of inequalities only for itself as helper, to check if the request is sane. It is
then able to answer with the respective amount of time it is willing participate in the manoeuvre.
In particular, the feasible helper may solve the inequalities for minimal time analogously to the
initiator and estimate its amount of time to participate based on the expected minimal time for the
manoeuvre.

Determining whether a Manoeuvre is Feasible within a Given Time Frame We consider
a lane change manoeuvre as feasible, if a lane change manoeuvre for the initiator with the current
helper satisfies Eq. 8.

Conclusion The proposed feasibility predictions rely on assumptions concerning the future evo-
lution of the traffic situation w.r.t. cars which are uninvolved. When quantifying the effectiveness
and efficiency of the feasibility functions for the lane change manoeuvre, validity of the predictions
has to be taken into account. If the system evolves as predicted and the determined feasible helper
accepts its helper role, then a situation can be enforced within the given time frame, such that the
initiator arrives aside a gap in front of feasible helper which is large enough to allow a safe lane
change.

The feasibility analysis presented is not safety critical, as the car’s control is responsible for
maintaining a safe state. However, the feasibility analysis has to be adequate in the sense that, on
one hand, if it is too optimistic, feasible helpers are identified for which the manoeuvre is unlikely
to be completed successfully and on the other hand, if it is too pessimistic, cars which would make
good feasible helpers are overlooked.
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4 Translation Controller

To keep the autonomous layer as simple (and general) as possible, to allow component reuse and
separate concerns, we introduced translation controllers. Translation controllers translate between
different layers, they map the identity centred messages of the protocol to the world of variable
values monitoring controllers of the autonomous layer. The autonomous layer receives from the pro-
tocol messages like prot?(ensureGap,car), prot?(respect,car) or prot?(changeLane, lane),
whereas the controllers of the autonomous layer are influenced by the values of variables dist,
βori, distgoal, vgoal and offset. These values are determined w.r.t. the reference objects new ahead,
car ahead, referenceline. Translation controllers update references to entities new ahead, car ahead,
referenceline and generate messages while monitoring the state of these entities. We denote the
case that there is no new ahead as new ahead =⊥ and analogously we write car ahead =⊥ meaning
there is no car ahead.

vgoal =



















min(vel(car ahead), vel(new ahead)) if new ahead 6=⊥6= car ahead

vel(car ahead) if new ahead =⊥6= car ahead

vel(new ahead) if car ahead 6=⊥= car ahead

velcruise else

(9)

dist =















































dist(new ahead, self ) if ( new ahead 6=⊥= car ahead ∨

new ahead 6=⊥6= car ahead ∧

new ahead.x < car ahead.x )

dist(car ahead, self ) if ( new ahead =⊥6= car ahead ∨

new ahead 6=⊥6= car ahead ∧

car ahead.x < new ahead.x )

∞ else.

(10)

distgoal =



































































SD(self , car ahead) if ( new ahead =⊥6= car ahead ∨

new ahead 6=⊥6= car ahead ∧

new ahead.x − SD(self , new ahead) <

car ahead.x − SD(self , car ahead) )

SD(self , new ahead) if ( car ahead =⊥6= new ahead

new ahead 6=⊥6= car ahead ∧

new ahead.x − SD(self , new ahead) <

car ahead.x − SD(self , car ahead) )

∞ else.

(11)

offset = self .y − self .referenceline (12)

Equation 9 makes the controller of Sect. 2 adjust its velocity to match the minimum velocity of the
cars car ahead and new ahead. We will see that car ahead is the car ahead on the same lane and
new ahead is the car behind which a lane changer will enter its target lane.

Eq. 10 together with Eq. 11 allows an agent to simultaneously respect the safety distances to
car ahead and new ahead. dist will be the distance to the object whose safety envelope is closer to
the agent. Eq. 11 accordingly sets distgoal to the respective safety distance.
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Eq. 12 defines the offset to be the distance to a reference line. A translation controller sets the
reference line to the mid of the target lane during a lane change manoeuvre otherwise the reference
line is the mid of the current lane. The controller of Sect. 2 then makes the agent change onto the
target lane.

In the following we describe the set of translation controllers needed as glue between the protocol
given in Sect. 3 and the controllers as given in Sect. 2. Note that some reference values of AUT are
updated by translation controllers while others are determined by sensor readings, as we will see in
Sect. 5.

4.1 Signalling

The initiator protocol (cf. Fig. 18) specifies that a car has to signal when it intends to change lane.
When the protocol tells the autonomous layer to set signals during an intended change onto the
lane lane, the following translation controller sets signals appropriately to the right or to the left
and switches the signals off when told so by the protocol.

signals left signals off signals right

prot? (signal,lane) ∧ lane > this.y pos prot? (signal,lane) ∧ lane < this.y pos

prot? signalOffprot? signalOff

Figure 23: Setting of Signals.

4.2 Lane Change Monitor

The lane change monitor (cf. Fig. 24) sets the target lane as new reference line, to which the steering
controller directs the agent car (cf. Sect. 2.1.2 on p. 16). In case the autonomous layer is told by the
protocol to recover (prot?recover), the original reference line is restored, so that the agent returns to
the lane it was on when the manoeuvre was initiated. When the target lane is reached with accepted
deviation in terms of offset and orientation, the protocol is informed about this (prot!recovered).

idle lane change recover

prot? (changeLane, lane)/
fallback:=this.referenceline
this.referenceline:=lane

prot? recover/
this.referenceline:=fall back

minori ≤βori≤maxori ∧ minoff ≤offset≤maxoff /
prot! recovered

minori ≤ori≤maxori ∧ minoff ≤off≤maxoff /
prot! laneChanged

Figure 24: Lane Change Monitor.
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4.3 Distance Monitoring During a Lane Change

When driving on a road a car has always to maintain safety distances to other cars. During a lane
change manoeuvre an agent also has to establish and simultaneously maintain safety distances to its
ahead and its intended new ahead. Similarly, a helper has to establish and simultaneously maintain
safety distances to its ahead and the initiator of the lane change. In the following we introduce the
translation controller concerned with distance monitoring. We distinguish three cases:

1. The initiator monitors distances during a lane change that is performed without a helper.

2. The initiator monitors distances during a lane change with helper.

3. The helper monitors distances during a lane change.

Lane Change With Helper (cf. Fig. 25) During a lane change manoeuvre the protocol
layer asks the autonomous layer to ensure a gap to the car ahead of the helper. For the autonomous
layer this means that the agent not only has to keep out of the safety envelope of its car ahead but
it also should adjust its velocity and distance so that it eventually respects the safety envelope of
the helper’s car ahead. The translation controller sets and updates a reference to the car ahead of
the helper (= new ahead) to which the agent is supposed to ensure a gap and generates a message
to the protocol layer as soon as the sensors signal that the gap is sufficiently large. For a lane
change with helper we consider a gap as large enough, if the agent respects the safety distance to
the helpers car ahead (i.e. its new car ahead) and also to its helper.

idle monitor
distance
OK

prot? (ensureGap,car)/
helper:=car
sens! checkGap

sens?gapOk/
prot!gapOk

prot? dismissGap/
helper:=⊥

prot? dismissGap
helper:=⊥

Figure 25: Gap Monitor I.

Lane Change Without Helper (cf. Fig. 26) Of course, a lane change can also be performed
if the target lane is not occupied. In this case the agent tells its sensors to check whether its target
lane is actually not occupied. If the sensors confirm, the protocol is told that the gap is OK.

Distance Monitoring as Helper (cf. Fig. 27) If the agent agrees to be a helper of an initia-
tor, the translation controller sets the new ahead reference to the initiator car. Hence its velocity
controller will adjust the velocity in order to also respect the safety distance to the initiator. In case
the speed difference to the initiator is so big that it gets out of the agent’s sight, the agent gives up
to get exactly the safety distance to the initiator (new ahead := ⊥), i.e. it does not adapt its speed
any more. But as soon as the initiator reappears the agent adjusts its speed again (new ahead :=
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idle

monitor
left

monitor
right

distance
OK

prot? (ensureGap,lane)
∧ lane=lane+1 /
sens!checkLeftLane

prot? (ensureGap,lane)
∧ lane=this.lane-1 /
sens!checkRightLane

sens? notOccupied/
prot!gapOk

sens? notOccupied/
prot!gapOk

prot? dismissGap

prot? dismissGap/
sens!stopLeftLaneCheck

prot? dismissGap/
sens!stopRightLaneCheck

Figure 26: Gap Monitor II.

idle monitor
far
away

prot? (respect,car)/
new ahead:=car,
respect:=car

sens? lostRespect/
new ahead:=void

sens? foundRespect/
new ahead:=this.respect

prot? (forget,car)/
new ahead:=⊥
∧ respect:=⊥

prot? (forget,car)/
new ahead:=⊥
∧ respect:=⊥

Figure 27: An agent as Helper.
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car). The variable respect stores a reference to the initiator for the case it temporarily disappears
from the agent’s sensors. This reference is erased only by the protocol message (forget,car).
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5 Sensors

Sensors have the exclusive access to the real world status of a vehicle and its environment. The
sensors’ readings constitute the vehicle’s internal model of its environment, the mental map. For
instance, sensors identify which car is currently directly ahead.

We model sensors that are limited to a certain range. When they discover a change, i.e. an incon-
sistency between their readings and the mental map, appropriate events are triggered. We abstract
from specific types of sensors and encapsulate these specifics in predicates like e.g. isSensible(car),
which evaluates to true when car is currently sensible in the environment.

5.1 Monitoring the car ahead

Figure 28 describes a sensor monitoring the car directly ahead. The predicate isSensible(car)

evaluates to true, if car is in front of the agent and close enough to be noticed by the sensors of
the agent. Expression env.isAhead(self) refers to the car actually in front of the considered agent,
that is the predicate is evaluated on the values evolving in the physical environment of the car (cf.
Sect. 6). In contrast, this.car ahead refers to the car that an agent thinks is currently directly ahead.

sense
car head

this.car ahead=⊥∧
isSensible(env.isAhead(self))/
this.car ahead:=env.isAhead(self)

¬ this.car ahead=⊥∧
¬ isSensible(env.isAhead(self))/
this.car ahead:=⊥

this.car ahead6=env.isAhead(self)∧
isSensible(env.isAhead(self))/
this.car ahead:=env.isAhead(self)

Figure 28: Sensor for car ahead.

5.2 Monitoring the new ahead

Figure 29 is the analogue of Fig. 28 but monitoring the helper’s car ahead (that is the new car ahead
of an initiator after successful completion of a lane change manoeuvre). If this car is close enough
to be noticed by the sensors the variable new ahead is set, so that the agent is made to respect this
car also. If the new ahead is detected as not sensible, the new ahead variable is set to be void, such
that the agent does not need to adjust its velocity.

5.3 Gap Sensor

This sensor reports whether the gap between the agent and its new ahead is sufficiently large. When
triggered by the protocol the sensor checks instantaneously whether the gap is sufficient, i.e. whether
safety distances are respected. In case this initial check fails, the sensors observes the gap until either
the gap can be reported to be sufficient or the sensor receives a dismissGap.
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sense
new ahead

helper 6= ⊥∧

isSensible(env.isAhead(helper)) ∧

this.new ahead6=env.isAhead(helper) /
this.new ahead:=env.isAhead(helper)

helper= ⊥ ∧

this.new ahead 6=⊥/
this.new ahead:=⊥

helper 6= ⊥ ∧

¬ isSensible(env.isAhead(helper))
∧ this.new ahead 6=⊥/
this.new ahead:=⊥

helper 6= ⊥ ∧

isSensible(env.isAhead(helper))
∧ this.new ahead=⊥/
this.new ahead:= env.isAhead(helper)

Figure 29: Sensor for new ahead.

idle
check
gap

aut?checkGap

aut? dismissGap

gapOk(this,new ahead)/
prot!gapOk

au
t?
d
is
m
is
sG

ap

Figure 30: Gap Sensor.

5.4 Signal Sensor

The protocol specifies that before the agent actually changes lane, a certain time span has to pass
without any other (relevant) car signalling its intend to change lane. The sensor given in Fig. 31
monitors car signals and reports whether a relevant car signals. Only when triggered by the protocol,
signals from other cars are considered. If a relevant signal is perceived, an alert notice is sent to the
protocol. A signal is considered as relevant if the signalling car could get in the way of the agent.

Determining when signals are relevant We safely over-approximate potential collision situa-
tions by the following considerations: In time t a car can cover a maximal distance of v · t+ accmax

2 · t2

(and did at least cover v·t− decelmax

2 ·t2). A residence area describes an interval of potential positions—
or rather x-coordinates—the car may be at in the given time interval. So if two cars A and B are
the same position at the same time then their residence areas intersect. With other words, two cars
can only be colliding if their areas intersect.

area(car, t) = [car.x, car.x + t · v +
accmax

2
· t2]

We want not only that two cars do not collide but also that they keep their safety distances at
all times. We take care of this by extending the residence area by the safety distance. To this end
we define the function areaSD(carA, carB, t) which gives us the residence area of car A extended by
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ignore
signals

watch
signals

prot?watchSignals/ first notice := true

prot? ignoreSignals

∃ car: signalRelevant(car)
∧ first notice/
prot! signalAlert∧
first notice:=false

Figure 31: Signal Sensor.

vb

va

areaa SEa,b

areab SEb,a

Figure 32: A collision situation: Areas extended by safety envelopes intersect.

the safety distance to carB:

areaSD(carA, carB, t) = [carA.x, carA.x + t · carA.v +
accmax

2
· t2 + SDmax(carA, carB, t)]

The values of SDmax(carA, carB, t) is again an upper approximation of the necessary safety distance.
We use

SDmax(carA, carB, t) :=
max{SD(carA.v + accmax · t, carB.v + accmax · t), SD(carB.v + accmax · t, carA.v + accmax · t)},

i.e. we neglect the order of carA and carB and consider their maximal reachable speed.
Now we can consider a signal as irrelevant for an agent A, if during the manoeuvre time tmaneuver

the extended areas of the agent A and a signalling car are distinct, that is

areaSD(signalling car, A, tmaneuver) ∩ areaSD(A, signalling car, tmaneuver) = ∅.

This is a very pessimistic approximation. A finer approximation of collision free situations can be
done by three simple refinements of the above approach: (1) We consider the direction of lane change,
(2) we take into account that there is a maximal and minimal velocity, (3) we introduce additional
observation points, since the above estimation gets more pessimistic the longer the manoeuvre
takes. The reason is that a residence area collects every position from time t = 0 to the manoeuvre
end. We get a less pessimistic estimation by scheduling more observation points, as described in
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the following.

areaSDi(carA, carB, tmaneuver) = [carA.x + ((i − 1) · tsample) · vslow(carA, i − 1),

carA.x + (i · tsample) · vfast(carA, i − 1)+

SDmax(carA, carB, tsample)]

with

vslow(carA, j) =

{

0, if (j · tsample) · carA.v − decelmax

2 · (j · t)2 ≤ 0

(j · tsample) · carA.v − decelmax

2 · (j · t)2, else

vfast(carA, j) =

{

vmax, if (j · tsample) · carA.v + accmax

2 · (j · t)2 ≥ vmax

(j · tsample) · carA.v + accmax

2 · (j · t)2, else

for all i ≥ 1 with i · tsample ≤ tmaneuver. For the i ∈ N, i ≥ 1 with (i−1) · tsample ≤ tmaneuver ≤ i · tsample,
we use

areaSDi(carA, carB, tmaneuver) = [carA.x + ((i − 1) · tsample) · vslow(i − 1),

carA.x + tmaneuver · vfast(i − 1) + SDmax(carA, carB)].

The areaSDi gives the (extended) residence area, the car has been in at times t, (i − 1) · tsample ≤
t ≤ i · tsample, i ≥ 1, where the lower bound approximates the position of the car assuming maximal
deceleration up to at most v = 0 and the upper bound assumes maximal acceleration up to at most
v = vmax.

Based on this we define the predicate signalRelevantcarB
(carA, tmaneuver) that evaluates to true,

when carA is considered as relevant for carB during the next tmaneuver time units. Let tmaneuver be the
time a manoeuvre is allowed to take at most. Let tsample be the sampling rate and l the smallest
number with tmaneuver ≤ l · tsample.

signalRelevantcarB
(carA, tmaneuver) :=
∃i : 1 ≤ i ≤ l : areaSDi(carB, carA, tmaneuver) ∩ areaSDi(carA, carB, tmaneuver) 6= ∅
∧ ( (carA.lane − 2 = carB.lane ∧ signalsRight(carA) ∧ carB.signalsLeft)

∨ (carA.lane + 2 = carB.lane ∧ signalsLeft(carA) ∧ carB.signalsRight) )

where carB.signalsLeft and carB.signalsRight are attributes of the current state of carB, whereas
carB.signalsLeft(carA) is a predicate that evaluates to true if the sensors of carB read that carA is
signalling to its left. carB.signalsRight(carA) is analogously defined.

That means, we consider the signal of a carA as relevant for carB if the residence areas of carA

and carB for the same time interval have an intersection—it is a necessary condition for a collision
of carA and carB that they can be at the same place at the same time (interval)—and if also carA is
two lanes left of carB signalling to its right while carB intends to go to the left, or vice versa carA is
two lanes right of carB and signals to the left while carB intends to change to its right. We do not
observe cars on (left or right) neighbouring lanes, because the protocol uses other means to make
sure that they do not get in the way: An agent has either a helper or checks via sensors whether
the target lane is occupied.
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Figure 33 shows a situation in which the two cars do not collide and the refined approach could
be used be detect this given an appropriate sampling, while the original approach will classify the
situation as collision situation: Both cars drive with approximately the same speed and initially the
distance between carA and carB is greater than the safety distance. When carB reaches a potential
collision position (position(carB) ∈ areaSD(carA) ∩ areaSD(carB)), carA will have reached a position at
the end of area(carA), so that again carA and carB are in a distance greater than the safety distance.

vb

va

areaa SEa,b

areab SEb,a

Figure 33: No collision situation.

5.5 Monitoring Neighbour Lanes

If the autonomous layer tells the sensors to check whether the lane to the agent’s left/right is
occupied, the sensors are started to perform this check. Either the sensor immediately returns that
the respective lane is free or the sensor continuously observes the neighbour lane until told to stop
by the autonomous layer. The predicate rightLaneFree is true iff any car that is right of the agent
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Figure 34: Next Lane Sensor.

is so far away that its possible area of residence is disjoint from the agent’s.

rightLaneFree:=∀car∈Cars: areaSD(self , t) ∩ area(car, t) 6= ∅ where t is an estimate
time the agent needs to change lane.
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6 Environment

The continuous system evolution takes place within what we call environment. There, the orientation
of cars, their positions, velocities and accelerations evolve over time. Their values represent the real
world situation at a given time, and cars learn about its environment via sensors, constructing a
mental map of the relevant aspects. The value xcentre of a car represents its longitudinal position
whereas the ycentre value represents the lateral position. Every car has a certain orientation, βori,
and a certain speed, v. The car’s orientation and the speed determine the evolution of its position.

v βori

v Figure 35: Evolution of Car Co-
ordinates. Orientation and speed
determine future xcentre and
ycentre coordinates of a car.

The speed of a car changes according to its acceleration acc. When a car is driving on a straight
line its orientation stays constant but when following a movement circle, its orientation changes
over time with angular velocity ω.

The environment also knows the current mode of movement, that is whether the car drives
on a straight line or follows a movement circle. The movement circle is changed discretely by the
Steering Controller of the autonomous layer. Also the acceleration is changed discretely on the
controllers’ demands (cf. Sect. 2.1.1 on p. 7).

Discrete and Continuous Evolution w.r.t. a Single Vehicle The environment’s evolution
for a single arbitrary car is given in Fig. 36. As described above, a car’s position, velocity and
orientation change continuously. Discrete updates are implemented by single-state state machines
composed in parallel.

Environment

d

dt
x = cosβori · v

d

dt
y = sinβori · v

d

dt
v = acc

d

dt
βori =

v

r
· side ·mode

Figure 36: The Environment.

Discrete updates monitor the following values and ensure that

• car ahead is always the directly preceding car.
The following transition changes car ahead appropriately.
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∃ car ∈ Cars: AheadOf(car, self) ∧ dist(self,car) < dist(self, car ahead) → car ahead’
∈ Cars ∧ AheadOf(car ahead’, self) ∧ ∀ car ∈ Cars: AheadOf(car, self)
⇒ dist(self, car ahead’)≤ dist(self,car)

The predicate AheadOf(car1,car2) is true if car1 is ahead of car2 on the same lane. So the
above transition, updates the car ahead reference when the agent directly ahead changes.

• lane represents the lane number the car is currently on.

¬(this.lane · lanewidth ≤ this.y < (this.lane+1) · lanewidth) → this.lane’ · lanewidth ≤
this.y < (this.lane’+1) · lanewidth

This transition is triggered, when a vehicle’s y-position comes into the range of another lane.
The lane number is then accordingly updated.

• mc is the current movement circle and mode is true (=1) iff the car follows a circle with
angular speed, ω and false (=0), otherwise.

aut? isMC(r,side) → mc’=(r,side) ∧ mode’=(r < ∞)

• acc is the current acceleration.

aut? isAcc(accctrl) / this.acc’ = accctrl

The above means that the controller’s acceleration directly and unperturbedly affects the
velocity of the vehicle.

The primed variables refer to next state values.

Initial States On system initialization, the number of lanes is specified and kept fixed during
the system’s evolution. Fixed model values also include the lane width (lanewidth), the width and
length of cars. For each car a position on the road, a velocity, acceleration and orientation is chosen.
We assume that when the system’s evolution starts, safety distances between cars are respected,
i.e. any car has a certain velocity and a sufficient safety distance to its car ahead. Further the
orientation of any car is such that the car still can choose a comfortable movement circle to bring
it parallel to the lane at its current velocity and accelerating with its current acceleration for tacc

(cf. accIsFeasible(v,acc,β,offset) on p. 7).
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7 Model Extensions

In the preceding we presented a coherent model on a carefully chosen abstraction level that features
many aspects of a fully automatised system, exposing challenging verification tasks for hybrid system
verification. Some design decisions of our model are discussed in the following, outlining the resulting
consequences for possible extensions.

7.1 Track Generation / Lane Segmentation

In this report, we consider cars travelling on a straight road with a fixed number of lanes that
are a priori unbounded in length. We investigated segmentation to overcome these limitations.
Segments spatially partition the highway. This conveniently allows to define a varying number of
lanes, a curved lane course and lane sections of varying road conditions. However, a curved lane
course would require more adaptations. For one, in the current model, predicates like aheadOf(carA,

carB) can easily be evaluated by examining the car’s coordinates: The two cars have to be on the
same lane, i.e. carA.y ∈ ]n−1 · lanewidth, n · lanewidth] ⇔ carB.y ∈]n−1 · lanewidth, n · lanewidth] for all lane

numbers n. When lanes are curved, it is necessary to know the course of lane, to evaluate whether two
cars are on the same lane. On top of the adaptation of such basic notions, the Steering Controller
should implement a strategy with a certain look-ahead to get onto its reference line.

7.2 Sensors

Our model specifies sensors continuously observing the changes in the environment. Certainly other
sensor variants can easily be implemented, for example, time triggered sensors that periodically
read data.

7.3 Disturbances

When the controllers of the autonomous layer set acceleration or movement line of a car, we assume
that the car behaves accordingly. We do not model disturbances that could represent for instance
different road conditions such as a slippery road or slopes. The standard way to model such dis-
turbances is to extend the differential equations of the environment by an input representing these
disturbances. One possible way to ensure collision freedom for different road conditions is then to
adjust the safety distance.

7.4 Car Characteristics

In our model all vehicles follow the same blueprint and hence exhibit the same capabilities and phys-
ical shape. In particular they have the same maximal acceleration and the same maximal decelera-
tion. The feasibility predictions (cf. Sect. 3.4) and the formula for safety distances (cf. Sect. A.1) are
based on this assumption. So if we would allow vehicles to have individual maximal acceleration and
deceleration, the computation of the safety distances needs to be adjusted. An easily implemented
solution is to then fix a global maximal deceleration and determine the safety distance w.r.t. to
these values. Downside of this solution is that safety distances now over-approximate the actually
necessary safety distance. Another way would be to be determine the safety distance w.r.t. the
actual deceleration of the respective cars. But then it has to be decided upon how a car gets to
know about the maximal deceleration of its car ahead. Although individual maximal acceleration
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and deceleration would also make the current feasibility predictions less accurate, safety of the lane
change manoeuvre should not be influenced by this change, as feasibility predictions are not safety
critical. A lane change is always monitored to respect the necessary safety distances.

7.5 Steering

We assumed that a vehicle is able to follow paths made up of line segments connected with tangential
circular arcs. Based on time predictions and feasibility requirements, the steering controller decides
on the most suitable next movement that is either straight or some kind of arc.

Paths of this type are considered by most planning techniques for the Reeds and Shepp car,
which is by far the most widely used car model in optimal path planning [5]. However the curvature
of the paths is discontinuous at the transition between segment and arcs, which means that at each
discontinuity the car has to instantaneously change its wheel angle.

An interesting alternative steering controller may be based on the Ackermann steering, which
can be expressed by three differential equations. But with such a steering model, path planning
becomes more complicated.

7.6 Communication

In our model we refrained from giving an explicit implementation of the communication layer, but
assumed synchronous—that is instantaneous and reliable—message passing between the agents’
protocol layers directly. The protocol in Sect. 3 is based on these assumptions. We remark that
such synchronous message passing can be used to explicitly model asynchronous communication,
for example, a communication layer might explicitly model a bounded FIFO queue by means of
synchronous message passing. A more sophisticated communication layer model could take further
aspects into account such as communication delays, corrupted messages and message losses. The
communication layer in isolation thus might be a simple communicating finite state machine, pos-
sibly enriched by clocks or by probabilistic choices. Note, that in any case the autonomous layer
ensures that manoeuvres are safe at all times, thus also in case of unreliable communication.
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8 Summary and Future Work

Intelligent transportation systems promise a myriad of merits [6], but at the same time demand
extraordinary measures to ensure that safety requirements are met [7]. The application of formal
methods becomes indispensable.

Since intelligent transportation systems often expose aspects of both, hybrid systems and dy-
namic communication systems, verification of these systems is especially challenging.

We presented a coherent hybrid system model of dynamically communicating vehicles that
coordinate cooperative lane change manoeuvres in a decentralized fashion. Its comprehensive formal
treatment is rare in literature but poses a prerequisite to push forward results on the application of
formal methods. The presented model may serve as a blueprint to derive various sub-models posing
interesting verification challenges.

To summarize, we described an extensible model of an advanced driver assistance system, with
a layered system architecture—as is state of the art—focussing on the core model of a lane change
assistance system.

First verification results have been achieved. Further, an implementation of a simulation model
is under construction as preparatory step to a formal model for hybrid system verification. We are
confident to cope with new challenging verification tasks derived from our model following ideas
of [2, 8, 10, 1] that provide a whole verification methodology for cooperating traffic agents and
abstractions tackling the unboundedness of the spatial environment [8] and the number of agents
[10, 1], respectively. An important contribution in this direction is presented in [3].
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A Appendix

A.1 Safety Distances

A safety distance describes the minimum distance between an agent carA and an agent carB for which
carA can guarantee to stop distmin behind carB. We distinguish between hard safety distances and
comfortable safety distances. A safety distance is hard when we allow the agent carA to brake hard
and a safety distance is called comfortable if carA may only decelerate comfortably. The comfortable
safety distance is expected to be maintained in standard situations. Hence when speaking of safety
distances (SD) we refer to the comfortable safety distances. The Approach Velocity Controller
(cf. Sect. 2.1.1) may bring a car closer to its agent directly ahead than comfortable safety distances
would allow but it always respects hard safety distances.

In the sequel we derive formulas for the safety distances.

Braking Distance The following formula evaluates the distance an agent needs to brake from
velocity v to a complete halt, when it accelerates with a for another t time units before the braking
force b is entirely available.

diststop(v, b, a, t) =
v2

2b
+ (

a

b
+ 1) · (v · t +

a

2
· t2) (13)

Safety Distance (SD(carA, carB, b)) Given an agent carA following with velocity v1 an agent
carB which is travelling at velocity v2. The safety distance SD(carA, carB, b) is the minimum distance
between carA and carB for which carA can guarantee to stop distmin length units behind carB, if
carB suddenly brakes with bmax while carA might accelerate with accmax for another tbrake time units
before it brakes with b.

SD(carA, carB, b) = diststop(v1, b, accmax, tbrake) −
v2

2

2bmax

+ distmin (14)

Safety Distance (SD(carA, carB)) The safety distance SD(carA, carB) is the minimum distance
between agents carA and carB for which carA can guarantee to comfortably stop distmin length units
behind carB, even if carB brakes with maximal braking force.

SD(carA, carB) = SD(carA, carB, bcomfort) (15)

A.2 Target Acceleration

In Sect. 2 we give a formula for the acceleration that constantly kept makes a car reach the set-point
velocity and distance. In the following we give a step by step derivation of the formula given on
page 15. The formula is based on the scenario depicted in figure 37.

Consider the scenario as illustrated in Fig. 37. Let us denote the initial positions of the agent
and its reference object as pa and pb, respectively. We denote their respective positions in the goal
scenario as p′

a and p′

b
. For this scenario we use as vgoal the velocity of the reference object and denote
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va vgoalb

distinitial scenario
(v ≥ vgoal ∧ dist ≥ distgoal) ∨
(v ≤ vgoal ∧ dist ≤ distgoal)

va vgoalb

distgoal
goal scenario
v = vgoal ∧ dist = distgoal

Figure 37: Determining acctarget and deceltarget. The controlled car is a and car b is the reference
object.

the agent’s velocity simply with v. We denote the (goal) displacement as dist (distgoal). We assume
that the car ahead drives with constant speed. This gives rise to the following system of equations:

p′

a = pa + v · t +
1

2
acc · t2

p′

b = vgoal · t + pb

distgoal = p′

b − p′

a

vgoal = v + acc · t

We use t =
vgoal−v

acc
to derive:

p′

a = pa + v ·
vgoal − v

acc
+

1

2
acc · (

vgoal − v

acc
)2

p′

b = vgoal ·
vgoal − v

acc
+ pb

distgoal = p′

b − p′

a.

Which is equivalent to

p′

a = pa +
v · vgoal − v2

acc
+

1

2
(
v2

goal − 2 vgoal · v + v2

acc
)

p′

b =
v2

goal − v · vgoal

acc
+ pb

distgoal = p′

b − p′

a.

Using distgoal = p′

b
− p′

a we get

distgoal =
v2

goal − v · vgoal

acc
+ pb − (pa +

v · vgoal − v2

acc
+

1

2
(
v2

goal − 2 vgoal · v + v2

acc
)) .

Which is transformed to

distgoal =
v2

goal

acc
−

v · vgoal

acc
+ pb − pa −

v · vgoal

acc
+

v2

acc
−

1

2

v2
goal

acc
+

vgoal · v

acc
−

1

2

v2

acc
.

By addition we get

distgoal =
1

2

v2
goal

acc
+

1

2

v2

acc
−

v · vgoal

acc
+ pb − pa =

1

2

(vgoal − v)2

acc
+ dist .
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Hence the agent reaches the distance distgoal with velocity vgoal when using the acceleration as below
and if the agent is slower than its reference object and too close to it, or if the agent is faster than
the reference object and too far away from it.

acc =
1

2

(vgoal − v)2

(distgoal − (pb − pa))
=

1

2

(vgoal − v)2

(distgoal − dist)

This result might be puzzling at the first glance. There is no dependence on the time and the
formula is independent of absolute velocities. But note that to accelerate from a given velocity v1

to a target velocity v2, we certainly have a variable time—v2 = v1 + t · acc. This means, the sooner
we want the car to reach the velocity v2 the stronger it has to accelerate. But since we also fix a
certain distance that the car has to cover, we can eliminate the time.

Also, the absolute velocities of the cars do not influence the target acceleration, as we refer only
to the relative distance.

A.3 Mode Invariants

In Table Table 1 on page 13 in Sect. 2 we gave invariants for the Approach Velocity Controller of
Fig. 9. Here we show how to derive the mode invariants on the example of (CoD3) and (CoD4).

The Invariant of mode ComfDecel includes the disjunction of (CoD1)-(CoD4).

state invariant

ComfDecel v > 0 ∧ (
(dist ≥ distgoal ∧ v > vgoal ∧ |deceltarget| ≥ |decelcomf|) (CoD1)
∨ (dist < distgoal ∧ v ≥ vgoal) (CoD2)
∨ (dist < distgoal ∧ v < vgoal ∧ acctarget < acccomf ∧ treason ≤ tacc

comf) (CoD3)
∨ (dist < distgoal ∧ v < vgoal ∧ acctarget < acccomf ∧ treason < tacc

target)) (CoD4)

Here we derive the clauses (CoD3) and (CoD4). The general scenario can be described as follows:
The car is too slow but also too close (dist < distgoal ∧ v < vgoal). It can use a constant (very)
low acceleration that would take it (very) long to reach the goal velocity—at least longer than
reasonable; the distance increases in the mean time as the velocity is less than the goal velocity.

We distinguish two cases: (i) using maximal comfortable acceleration would take longer than
treason and (ii) using the target acceleration takes longer than treason but acccomf takes at most treason.

We get dist < distgoal ∧ v < vgoal to express that the distance is less than the goal distance and
the velocity is less than the goal velocity. In this case a target acceleration exists.

acctarget < acccomf expresses that the target acceleration is still comfortable.
The following implication means that given we can reach the goal velocity and distance using

maximal comfortable acceleration within reasonable time, then we only further decelerate if the
target acceleration takes longer than treason.

tacc
comf < treason ⇒ tacc

target > treason

Put together we get

dist < distgoal ∧ v < vgoal ∧ acctarget < acccomf ∧ acctarget < acccomf ∧ (tacc
comf < treason ⇒ tacc

target > treason)
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Figure 38: Example Trajectory.

which can be transformed into:
(dist < distgoal ∧ v < vgoal ∧ acctarget < acccomf ∧ treason ≤ tacc

comf)
∨ (dist < distgoal ∧ v < vgoal ∧ acctarget < acccomf ∧ treason < tacc

target)

Analogously the conditions (CoA3) and (CoA4) can be derived. Figure 38 shows an exemplary
trajectory with (CoA3).
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